
 

 

PERIYAR UNIVERSITY 

(NAAC 'A++' Grade with CGPA 3.61 (Cycle - 3) 

SALEM - 636 011 

 

 

CENTRE FOR DISTANCE AND ONLINE EDUCATION  

(CDOE) 

 

 

 

MASTER OF COMPUTER APPLICATIONS 

SEMESTER - II 

 

 

 

 

 

CORE COURSE: BIG DATA ANALYTICS 

(Candidates admitted from 2024 onwards)

State University - NIRF Rank 56 - State Public University Rank 25



 

 

 

 

PERIYAR UNIVERSITY 

           

CENTRE FOR DISTANCE AND ONLINE EDUCATION (CDOE) 

M. C. A. 2024 admission onwards 

 
22UPCSC1C09 Core VIII : BIG DATA ANALYTICS 

 

Prepared by: 

 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Centre for Distance and Online Education (CDOE)

Periyar University

Salem - 636011



 

 

 

Syllabus 
UNIT 
No 

CONTENTS 

1 

Big Data and Analytics: Classification of Digital Data: Structured Data- 

Semi Structured Data and Unstructured Data. Introduction to Big Data: 

Characteristics - Evolution - Definition - Challenges with Big Data - Other 

Characteristics of Data - Big Data - Traditional Business Intelligence 

versus Big Data - Data Warehouse and Hadoop. Environment Big Data 

Analytics: Classification of Analytics - Challenges - Big Data Analytics 

important - Data Science - Data Scientist - Terminologies used in Big 

Data Environments - Basically Available Soft State Eventual Consistency 

- Top Analytics Tools 

2 

Technology Landscape: NoSQL, Comparison of SQL and NoSQL, 

Hadoop -RDBMS Versus Hadoop - Distributed Computing Challenges -

Hadoop Overview - Hadoop Distributed File System - Processing Data 

with Hadoop - Managing Resources and Applications with Hadoop 

YARN - Interacting with Hadoop Ecosystem 

3 

Mongodb and Mapreduce Programming: MongoDB: Mongo DB - Terms 

used in RDBMS and Mongo DB - Data Types - MongoDB Query 

Language. MapReduce: Mapper - Reducer - Combiner -Partitioner- 

Searching - Sorting - Compression 

4 

Hive: Introduction - Architecture - Data Types - File Formats - Hive Query 

Language Statements - Partitions - Bucketing - Views - Sub- Query - 

Joins - Aggregations - Group by and Having - RCFile - Implementation - 

Hive User Defined Function - Serialization and Deserialization. 

5 

Pig: Introduction - Anatomy - Features - Philosophy - Use Case for Pig - 

Pig Latin Overview - Pig Primitive Data Types - Running Pig - Execution 

Modes of Pig - HDFS Commands - Relational Operators - Eval Function 

- Complex Data Types - Piggy Bank - User-Defined Functions - 

Parameter Substitution - Diagnostic Operator - Word Count Example 

using Pig - Pig at Yahoo! - Pig Versus Hive 

 



 

 

 

Table of Contents 

S. No Contents Page No. 
1.  UNIT-I: BIG DATA AND ANALYTICS 1 
2.  

1.1 Types of Digital Data 
1 

3.  
1.2 Classification of Digital Data  

2 

4.  
1.3     Introduction to Big Data  

10 

5.  
1.4 Characteristics of Data 

12 

6.  
1.5 Evolution of Big Data 

13 

7.  
1.6 Definition of Big Data 

13 

8.  
1.7 Why Big data? 

17 

9.  
1.8    Hadoop Environment Big Data Analytics 

19 

10. 1.9    What Big Data isn’t? 21 
11. 1.10  Data Science Overview 28 
12. 1.11  CAP Theorem (Brewer’s Theorem) 30 
13. 1.12 Basic Availability, Soft State and 

Eventual Consistency 
31 

 
14. 1.13  Top Analytics Tools 31 

 
15. Summary 34 

 
16. Glossary 36 
17. Checkup Your Progress 38 
18. UNIT-II:TECHNOLOGY LANDSCAPE 43 
19. 2.1 NoSQL (NOT ONLY SQL) 44 
20. 2.2 Hadoop 55 
21. 2.3 Introducing Hadoop 70 
22. 2.4 History of Hadoop   76 
23. 2.5 Use Case of Hadoop : ClickStream Data   80 
24. 2.6 Hadoop Distributors 80 
25. 2.7 HDFS (Hadoop Distributed File System) 81 
26. 2.8 Anatomy of File Read   84 



 

 

 

27. 2.9 Working with HDFS Commands   87 
28. 2.10 Processing Data with Hadoop   88 
29. Summary 91 
30. Glossary 94 
31. Checkup Your Progress 95 
32. UNIT-III MONGODB AND MAP REDUCE 

PROGRAMMING 
100 

33. 3.1 What is MongoDB? 100 
34. 3.2 Why MongoDB?   101 
35. 3.3 Terms Used in RDBMS and MongoDB 105 
36. 3.4 Datatypes in MongoDB 108 
37. 3.5 MongoDB Query Language 108 
38. 3.6 MapReduce Programming 117 
39. 3.7 Compression   122 
40. Summary 124 
41. Glossary 126 
42. Checkup Your Progress 127 
43. Unit IV:  HIVE 131 
44. 4.1 What is Hive?   131 
45. 4.2 Hive Architecture   135 
46. 4.3 Hive Data Types 137 
47. 4.4 Hive File Format 139 
48. 4.5 Hive Query Language (HQL) 141 
49. 4.6 Tables 150 
50. 4.7 Partitions 151 
51. 4.8 Joins 151 
52. 4.9 Aggregation 152 
53. 4.10 Group By and Having 153 
54. 4.11 SERDE  154 
55. 4.12 User-Defined Function (UDF) in Hive 156 
56. Summary 159 
57. Glossary 161 
58. Checkup Your Progress 162 
59. UNIT- V : PIG 166 
60. 5.1 What is Pig? 167 
61. 5.2 The Anatomy of Pig 167 
62. 5.3 Pig on Hadoop 167 
63. 5.4 Pig Philosophy 168 
64. 5.5 Use Case for Pig: ETL Processing 168 



 

 

 

65. 5.6 Pig Latin Statements 169 
66. 5.7 Data Types in Pig 171 
67. 5.8 Running Pig 171 
68. 5.9 Execution Modes of Pig 172 
69. 5.10 HDFS Commands 173 
70. 5.11 Relational Operators 173 
71. 5.12 Eval Function 179 
72. 5.13 Complex Data Types 180 
73. 5.14 Piggy Bank 181 
74. 5.15 User-Defined Functions (UDF) 182 
75. 5.16 Parameter Substitution 183 
76. 5.17 Diagnostic Operator 184 
77. 5.18 Word Count Example using Pig 184 
78. 5.19 When to use Pig? 185 
79. 5.20 When NOT to use Pig? 185 
80. 5.21 Pig at Yahoo! 185 
81. 5.22 Pig versus Hive Features 186 
82. Summary 188 
83. Glossary 191 
84. Checkup Your Progress 193 
85. Unit-wise Assignments 197 
86. Question Bank : MCQ 205 
87. Question Bank: Descriptive Questions 226 

  



 

 

1 

 

UNIT-I: BIG DATA AND ANALYTICS 

UNIT I OBJECTIVES 

Unit 1 provides an introduction to the concepts, technologies, and methods 

related to Big Data and Analytics. It focuses on understanding the characteristics of Big 

Data, the importance of analytics, and the various tools and techniques used in the field. 

Unit Summary 

1. Introduction to Digital Data 

o Classification of Digital Data: Structured, Semi-Structured, and 

Unstructured Data 

o Characteristics and Evolution of Big Data 

2. Introduction to Big Data 

o Definition and Challenges of Big Data 

o Comparison between Traditional Business Intelligence and Big Data 

o Data Warehousing and Hadoop 

3. Big Data Analytics 

o Classification of Analytics 

o Importance and Challenges of Big Data Analytics 

o The Role of Data Science and Data Scientists 

o Terminologies in Big Data Environments 

o Overview of Basically Available Soft State Eventual Consistency (BASE) 

o Top Analytics Tools 

1.1 Types of Digital Data 
What is Data ? 

Data is present internal to the enterprise and also exists outside the four walls and 

firewalls of the enterprise.  Data is present in homogeneous sources as well as in 

heterogeneous sources. The need of the hour is to understand, manage, process, and 

take the data for analysis to draw valuable insights.   

Data → Information 



 

 

2 

 

Information → Insights 

1.2 Classification of Digital Data  
Digital data can be broadly classified into three types such as structured, semi-

structured, and unstructured data. It is graphically shown in figure 1.1 

 

Figure 1.1 Classification of digital data 

Unstructured Data: This type of data does not adhere to a predefined data model and 

is not easily processed by computer programs. It constitutes about 80–90% of an 

organization's data and includes formats like memos, chat logs, PowerPoint 

presentations, images, videos, letters, research papers, white papers, and email bodies. 

Semi-Structured Data: This data does not fit neatly into a fixed data model but 

contains some organizational elements. Although it is not readily usable by computer 

programs in its raw form, it includes elements such as emails, XML files, and HTML 

markup. It often includes metadata, but this metadata may not be comprehensive 

enough for detailed processing. 

Structured Data: This data is highly organized and formatted, typically into rows and 

columns, making it easily processable by computer programs. It involves clear 

relationships between data entities, such as classes and their associated objects. 

Data stored in databases is an example of structured data.  Ever since the 1980s most 

of the enterprise data has been stored in relational databases complete with 

rows/records/tuples, columns/attributes/fields, primary keys, foreign keys, etc. Over a 

period of time Relational Database Management System (RDBMS) matured and the 

RDBMS, as they are available today, have become more robust, cost-effective, and 

efficient. We have grown comfortable working with RDBMS – the storage, retrieval, and 

management of data has been immensely simplified. The data held in RDBMS is 

typically structured data. However, with the Internet connecting the world, data that 



 

 

3 

 

existed beyond one’s enterprise started to become an integral part of daily transactions. 

This data grew by leaps and bounds so much so that it became difficult for the 

enterprises to ignore it. All of this data was not structured. A lot of it was unstructured. In 

fact, Gartner estimates that almost 80% of data generated in any enterprise today is 

unstructured data. Roughly around 10% of data is in the structured and semi-structured 

category.  

1.2.1 Structured Data 

Let us begin with a very basic question — When do we say that the data is structured? 

The simple answer is when data conforms to a pre-defined schema/structure we say it 

is structured data. 

 

Figure 1.2 Approximate percentage distribution of digital data. 

Think structured data, and think data model — a model of the types of business data that 

we intend to store, process, and access. Let us discuss this in the context of an RDBMS. 

Most of the structured data is held in RDBMS. An RDBMS conforms to the relational 

data model wherein the data is stored in rows/columns. Refer Table 1.1. 

The number of rows/records/tuples in a relation is called the cardinality of a relation and 

the number of columns is referred to as the degree of a relation. 

Table 1.2 is an example of a good structured table (complete with table name, 

meaningful column names with data types, data length, and the relevant constraints) 

with absolute adherence to relational data model. 

Table 1.1 A relation/table with rows and columns 

 Column 1 Column 2 Column 3 Column 4 

Row 1     



 

 

4 

 

Table 1.2 Schema of an “Employee” table in a RDBMS such as Oracle 

Column Name Data Type Constraints 

EmpNo Varchar(10) PRIMARY KEY 

EmpName Varchar(50)  

Designation Varchar(25) NOTNULL 

DeptNo Varchar(5)  

ContactNo Varchar(10) NOTNULL 

 

1.2.1.1 Source of Structured Data 

Structured data, characterized by its organized format and clear schema, is often 

generated by day-to-day business activities and is commonly associated with online 

transaction processing (OLTP) systems. 

To effectively manage and store structured data, organizations can leverage 

various RDBMS solutions, including those offered by Oracle Corp., IBM (DB2), 

Microsoft (SQL Server), EMC (Greenplum), Teradata, MySQL (an open-source 

RDBMS), and PostgreSQL (an advanced open-source RDBMS). 

These RDBMS solutions provide robust capabilities for storing, querying, and 

managing structured data efficiently. They are well-suited for handling transactional 

data, which is typically structured and generated in large volumes as a result of 

business operations. Figure 1.3 likely provides a visual representation or comparison of 

different RDBMS solutions, showcasing their features, strengths, and potential use 

cases. 



 

 

5 

 

 

Figure 1.3  Sources of Structured data. 

1.2.1.2. Ease of Working with Structured Data 

Structured data provides the ease of working with it. Refer Figure 1.4. The ease is with 

respect to the following: 

1. Insert/update/delete: The Data Manipulation Language (DML) operations 

provide the required ease with data input, storage, access, process, analysis, 

etc. 

2. Security: How does one ensure the security of information? There are available 

staunch encryption and tokenization solutions to warrant the security of 

information throughout its lifecycle. Organizations are able to retain control and 

maintain compliance adherence by ensuring that only authorized individuals 

are able to decrypt and view sensitive information. 

3. Indexing: An index is a data structure that speeds up the data retrieval 

operations (primarily the SELECT DML statement) at the cost of additional 

writes and storage space, but the benefits that ensue in search operation are 

worth the additional writes and storage space. 

4. Scalability: The storage and processing capabilities of the traditional RDBMS 

can be easily scaled up by increasing the horsepower of the database server 

(increasing the primary and secondary or peripheral storage capacity, processing 

capacity of the processor, etc.). 



 

 

6 

 

 

Figure 1.4  Ease of Working with Sturctured Data 

5. Transaction processing: RDBMS has support for Atomicity, Consistency, 

Isolation, and Durability (ACID) properties of transaction. Given next is a quick 

explanation of the ACID properties: 

 Atomicity: A transaction is atomic, means that either it happens in its 

entirety or none of it at all. 

 Consistency: The database moves from one consistent state to another 

consistent state. In other words, if the same piece of information is stored at two 

or more places, they are in complete agreement. 

 Isolation: The resource allocation to the transaction happens such that the 

transaction gets the impression that it is the only transaction happening in 

isolation. 

 Durability: All changes made to the database during a transaction are 

permanent and that accounts for the durability of the transaction. 

1.2.2 Semi-Structured Data 

Semi-structured data is also referred to as self-describing structure Refer Fig. 1.5.  

1. It does not conform to the data models that one typically associates with 

relational databases or any other form of data tables.  

2. It uses tags to segregate semantic elements.  



 

 

7 

 

 

Figure 1.5 Characterstics of Semi-Structured Data 

3. Tags are also used to enforce hierarchies of records and fields within data.   

4. There is no separation between the data and the schema. The amount of 

structure used is dictated by the purpose at hand. 

5. In semi-structured data, entities belonging to the same class and also grouped 

together need not necessarily have the same set of attributes. And if at all, they 

have the same set of attributes, the order of attributes may not be similar and for 

all practical purposes it is not important as well.  

 1.2.2.1 Sources of Semi-Structured Data   

The popular sources for semi-structured data are “XML” and “JSON” as depicted in 

Figure 1.6.  

1. XML: eXtensible Markup Language (XML) is hugely popularized by web services 

developed utilizing the Simple Object Access Protocol (SOAP) principles.  

2. JSON: Java Script Object Notation (JSON) is used to transmit data between a 

server and a web application. JSON is popularized by web services developed 

utilizing the Representational State Transfer (REST) – an architecture style for 

creating scalable web services. MongoDB (open-source, distributed, NoSQL, 

documented-oriented database) and Couchbase (originally known as Membase) 



 

 

8 

 

 

Figure 1.6 Sources of Semi-Structured Data 

Sample JSON document: 

  { 

  _id:9,  

 Book_Title: “Fundamentals of  Analytics”,   

Author_Name: “Seema”,  

 Publishers: “Wiley India”,  

 Year :“2021”   

}  

 

Figure 1.7 Sources of unstructured data 

 



 

 

9 

 

1.2.3 Unstructured Data   

Unstructured data does not conform to any pre-defined data model. Figure 1.7 depicts 

the sources of unstructured data. 

 

1.2.3.1 Issues with “Unstructured” Data   

Although unstructured data is known NOT to conform to a pre-defined data model or be 

organized in a pre-defined manner, there are incidents wherein the structure of the data 

(placed in the unstructured category) can still be implied. Figure 1.8 illustrate the issues 

in the it. 

 

Figure 1.8 Issues with terminology of unstructured data 

The following techniques are used to find patterns in or interpret unstructured data:   

1. Data mining: First, we deal with large data sets. Second, we use methods at the 

intersection of artificial intelligence, machine learning, statistics, and database 

systems to unearth consistent patterns in large data sets and/or systematic 

relationships between variables. It is the analysis step of the “knowledge 

discovery in databases” process.  Few popular data mining algorithms are as 

follows:  

a.  Association rule mining: It is also called “market basket analysis” or 

“affinity analysis”. It is used to determine “What goes with what?” It is 

about when you buy a product, what is the other product that you are 



 

 

10 

 

likely to purchase with it. For example, if you pick up bread from the 

grocery, are you likely to pick eggs or cheese to go with it.  • 

b. Regression analysis: It helps to predict the relationship between two 

variables. The variable whose value needs to be predicted is called the 

dependent variable and the variables which are used to predict the value 

are referred to as the independent variables.  

Lets sum up 

Big Data and Analytics introduce fundamental concepts essential for understanding the 

landscape of digital data. It covers the classification of digital data into structured, semi-

structured, and unstructured forms, highlighting their respective characteristics and 

usage scenarios. Structured data, organized into predefined schemas, exemplifies data 

found in traditional relational databases, crucial for transactional processes due to its 

consistency and ease of management.  

Semi-structured data, lacking a rigid schema but employing tags for hierarchy, is 

prevalent in formats like XML and JSON, commonly used in web services. Meanwhile, 

unstructured data, which lacks any predefined format or model, constitutes a significant 

portion of enterprise data, including documents, emails, and multimedia content. The 

unit also discusses the evolution of Big Data, emphasizing its challenges and 

distinctiveness from traditional Business Intelligence, along with an overview of 

technologies like Hadoop and data warehousing. Additionally, it explores the importance 

of analytics in harnessing valuable insights from Big Data, the role of data science and 

scientists, and introduces key terminologies such as BASE (Basically Available Soft 

State Eventual Consistency). This foundational understanding sets the stage for deeper 

exploration into tools and techniques employed in Big Data analytics. 

1.3 Introduction to Big Data  

The rapid growth of the "Internet of Things" has led to an overwhelming expansion of 

big data. Businesses today are inundated with vast amounts of data, creating both 

challenges and opportunities. This raises several key questions: 

Why is big data now indispensable? 



 

 

11 

 

How has it become so crucial for modern business operations? 

How does it compare with traditional Business Intelligence (BI) systems? 

Will big data replace traditional relational databases and data warehouses, or will it 

enhance them? 

Examples of Big Data: 

Big data analytics plays a vital role across various sectors, including retail, IT 

infrastructure, and social media. 

Retail: Big data offers significant advantages for improving sales and marketing 

strategies. For instance, the U.S. retailer Target analyzed customer purchasing patterns 

and discovered that major life events like marriage, divorce, and pregnancy drive 

substantial shifts in consumer behavior. Target used these insights to manage its 

inventory, anticipating demand for specific products based on life-event trends. 

IT Infrastructure: The MapReduce model is often used in big data projects due to its 

ability to handle large, unconventional datasets. Hadoop, which is built on a distributed 

file system, allows organizations to use clusters of servers to process massive data 

volumes cost-effectively. 

Social Media: Platforms like Twitter and Facebook generate enormous quantities of 

unstructured data. Hadoop and its ecosystem of tools help manage and analyze this 

data, enabling companies to create social graphs and manage transactions between 

millions of users. 

Professional Networks: LinkedIn is an example of a company where data is central to 

its product. The platform, which caters to professionals, has grown to over 250 million 

users as of 2014, offering various data-driven services such as job recruitment, 

advertising, and social graphs of users' professional networks. 

Healthcare: 

Big data is revolutionizing the healthcare industry by enabling better patient outcomes, 

predictive analytics, and personalized medicine. Hospitals and healthcare providers use 



 

 

12 

 

vast amounts of patient data to identify trends, predict outbreaks, and offer more 

effective treatments. 

Example: IBM's Watson Health uses big data to analyze medical records, clinical trials, 

and research papers to help doctors make more informed decisions. Predictive 

analytics are used to foresee potential health risks based on a patient’s medical history 

and lifestyle. 

Finance: The finance industry uses big data to detect fraud, assess credit risks, and 

provide personalized financial services. 

Example: Credit card companies use big data analytics to monitor transactions in real-

time, spotting irregularities that might indicate fraudulent activity. Machine learning 

algorithms help in predicting customer defaults or offering tailored loan products based 

on spending habits and income data. 

Manufacturing: Big data is used in manufacturing for optimizing production processes, 

predictive maintenance, and improving product design by analyzing customer feedback. 

Example: General Electric (GE) uses big data to monitor machinery in real time through 

sensors embedded in industrial equipment. This allows GE to predict when a machine 

part will fail and perform maintenance before a breakdown occurs, reducing downtime. 

1.4 Characteristics of Data: 

As in Figure 1.9, data can be characterized by three main attributes: 

1. Composition: This refers to the structure and sources of the data, including its 

granularity, type, and whether it is static or real-time. 

2. Condition: This aspect relates to the usability of data. It asks whether the data is 

ready for analysis or if it requires cleansing or enhancement. 

3. Context: The context addresses the origin, purpose, and sensitivity of the data, 

as well as any related events. 



 

 

13 

 

Before the big data revolution, "small data" was about certainty, with clear, defined 

sources and relatively stable structures. In contrast, big data introduces new 

complexities in the composition, condition, and context of information. 

 

Figure 1.9 Charasteristics of data 

1.5 Evolution of Big Data:  

1970s and before was the era of mainframes. The data was essentially primitive and 

structured. Relational databases evolved in 1980s and 1990s. The era was of data 

intensive applications. The World Wide Web (WWW) and the Internet of Things (IOT) 

have led to an onslaught of structured, unstructured, and multimedia data. Table 1.3 

clearly showed the evolution of big data. 

Table 1.3 The evolution of Big Data 

 

1.6 Definition of Big Data:  

Big data refers to vast, fast, and diverse datasets that require advanced and cost-

effective methods for processing to gain better insights and improve decision-making. 

These datasets often exceed the capacity of traditional database tools and require 

innovative technologies to handle their size and complexity. 



 

 

14 

 

Big data is characterized by three main dimensions: 

Volume: The enormous scale of data, often measured in terabytes, petabytes, or even 

zettabytes. 

Velocity: The speed at which data is generated and processed, moving from traditional 

batch processing to real-time data streams. 

Variety: The different types of data, ranging from structured (like databases) to semi-

structured (e.g., XML files, emails), and unstructured data (such as multimedia, 

documents, and emails). 

Key Characteristics: 

Variety: Data comes in multiple formats. Structured data fits neatly into relational 

databases, while semi-structured data includes formats like HTML, XML, and CSV files. 

Unstructured data comprises diverse content like images, videos, research papers, and 

emails, all of which lack a predefined structure. 

Velocity: This refers to the speed at which data is generated and must be processed. 

As systems move from basic desktop applications to real-time data streams, the need 

for immediate data processing has grown significantly. 

Volume: The sheer amount of data being produced has grown exponentially, reaching 

terabytes, petabytes, and even zettabytes. 

The Gartner Definition of Big Data: 

According to Gartner, big data involves "high-volume, high-velocity, and/or high-variety 

information assets that demand cost-effective, innovative forms of information 

processing for enhanced insight and decision making." 

This definition can be broken into three main parts: 

High-Volume, High-Velocity, and High-Variety Information Assets: Big data typically 

involves vast quantities of data, coming in various formats and requiring quick 

processing for storage, analysis, and interpretation. 



 

 

15 

 

Cost-Effective and Innovative Processing: Handling big data requires embracing new 

technologies and methodologies to ingest, store, and analyze the data efficiently. This 

could include distributed storage systems, cloud computing, or advanced analytics 

platforms that are capable of managing large datasets at a lower cost. 

Enhanced Insight and Decision-Making: The ultimate goal of big data is to derive 

meaningful insights that drive smarter, faster, and more informed decision-making. 

Organizations that can effectively analyze big data gain a competitive edge by using 

these insights to create business value. 

Big data has transformed industries by enabling deeper analysis of vast datasets, 

leading to more informed strategies and faster responses to market changes. 

Data —> Information —> Actionable intelligence —> Better decisions —

>Enhanced business value 

1.6.1 Challenges with big data  

Following are a few challenges with big data are depicted in figure 1. 10. 

 

Figure 1.10 Challenges with bigdata 

•  Data Volume: The amount of data being generated is increasing exponentially, and 

this trend is expected to continue. Critical questions arise, such as: 

“Is all this data valuable for analysis?” 



 

 

16 

 

“Should we work with the entire dataset or just a portion?” 

“How can we filter useful information from irrelevant data?” 

•  Storage: Cloud computing offers a cost-efficient, scalable, and flexible solution for 

managing big data infrastructure. However, using cloud services for hosting big data 

solutions adds complexity, particularly when deciding whether to keep data systems 

within the organization or outsource them. 

•  Data Retention: Determining how long data should be stored is another challenge. 

While some data might be valuable for long-term decision-making, other data may 

quickly become outdated and lose its relevance. 

•  Skilled Professionals: Organizations need highly skilled data scientists and 

professionals to develop, manage, and run big data applications that generate 

meaningful insights. The demand for expertise in this field is growing rapidly. 

•  Additional Challenges: Other significant issues include the capture, storage, search, 

analysis, transfer, and security of big data. Ensuring that these processes are efficient 

and secure is crucial for handling massive datasets. 

•  Visualization: Big data refers to datasets that exceed the storage and processing 

capabilities of traditional database tools. Data visualization, or the representation of 

data using computer graphics, is emerging as a specialized field, yet there are still very 

few experts in this area. 

What is Big Data? 

Big data refers to vast and intricate datasets that are too large and complex to be 

efficiently processed using traditional data management tools. These datasets are often 

described by four key characteristics, known as the "4 Vs" of big data: 

Volume: Big data encompasses huge quantities of information, often measured in 

terabytes, petabytes, or even exabytes. The sheer size of these datasets surpasses the 

capabilities of traditional database systems, requiring specialized techniques and tools 

for storage and processing. 



 

 

17 

 

Velocity: The speed at which big data is generated is extremely high, with data flowing 

continuously from sources like sensors, social media, mobile devices, and the Internet 

of Things (IoT). This rapid rate of data creation presents challenges for real-time data 

processing and analysis. 

Variety: Big data comes in many different forms, including structured, semi-structured, 

and unstructured formats. Structured data is organized with a predefined schema, often 

stored in databases or tables, while unstructured data lacks such structure and includes 

elements like text, images, and videos. Semi-structured data falls in between, with some 

level of organization but less rigid than fully structured data.Other characteristics of data 

that are not necessarily specific to big data but are still crucial considerations in data 

analysis include the following: Here's a summary:  

1. Veracity and Validity: 

o Veracity: Denotes the trustworthiness and reliability of data, taking into 

account biases, noise, and abnormality. It questions whether all the data 

being stored, mined, and analyzed is meaningful and relevant to the 

problem at hand. 

o Validity: Denotes the accuracy and correctness of the data. It emphasizes 

the importance of ensuring that the data selected for analysis is accurate, 

regardless of whether it falls under the realm of big data. 

2. Volatility: 

o Volatility: Addresses the duration for which data remains valid and 

relevant. It raises questions about how long data should be stored and 

how long it retains its usefulness. 

o Some data may be required for long-term decision-making and remain 

valid for extended periods, while other data quickly becomes obsolete, 

sometimes within minutes or hours. 

1.7 Why Big data?  

The larger the amount of data available for analysis, the higher the accuracy of the 

insights derived, leading to greater confidence in the decisions based on those findings. 



 

 

18 

 

Improved accuracy in analysis can result in significant benefits, such as increased 

operational efficiency, reduced costs and time, the development of new products and 

services, and the optimization of current offerings. (See Figure 

1.11.)

 

Figure 1.11 Why is Big Data? 

1.7.1 Business Intelligence vs Big Data 

While both Big Data and Business Intelligence (BI) are used to analyze data and 

support companies in decision-making, they differ in several key aspects, particularly in 

how they function and the types of data they process. 

Traditional BI operates by gathering all business-related data into a centralized 

server. The data is typically analyzed in an offline mode after being stored in a Data 

Warehouse. This data is structured and organized using relational databases, along 

with additional indexes and access methods such as multidimensional cubes for 

efficient querying.These are the main differences between 

1.7.1.1 Big Data and Business Intelligence: 

 In a Big Data environment, data is stored on a distributed file system rather than a 

centralized server, offering greater security and flexibility. 

 Big Data solutions bring the processing tasks to the data itself, rather than 

transferring the data to the processing functions. This method enables easier 

handling of large data volumes in a more efficient and agile manner. 



 

 

19 

 

 Big Data can analyze both structured and unstructured data, with the latter 

growing at a faster rate than traditional structured data. However, unstructured 

data analysis presents unique challenges. 

 Big Data addresses these challenges by enabling a comprehensive analysis of 

data from multiple sources, whether it is historical or real-time. This allows 

companies to make swift, informed decisions that impact their business 

operations. 

 Big Data technologies utilize mass parallel processing (MPP), which enhances 

the speed of data analysis. By executing multiple tasks simultaneously and 

breaking them into smaller, parallel parts, the results are merged at the end, 

enabling quick analysis of large datasets. 

Lets sum up 

In this section, the focus is on understanding Big Data and its significance in modern 

business operations. Big Data refers to large and complex datasets characterized by 

high volume, velocity, and variety, which traditional data processing methods struggle 

to handle effectively. The advent of the Internet of Things (IoT) has contributed 

significantly to the proliferation of Big Data, generating data at unprecedented speeds 

and in diverse formats such as structured, semi-structured, and unstructured. 

In summary, Big Data represents a paradigm shift in data analytics, offering 

organizations the ability to leverage diverse data sources for informed decision-making 

and competitive advantage. It complements traditional BI approaches by addressing the 

challenges posed by the volume, velocity, and variety of modern data, thereby 

transforming how businesses extract value from their data assets. 

1.8 Hadoop Environment Big Data Analytics 
 

Hadoop is revolutionizing the way Big Data, particularly unstructured data, is managed. 

The Apache Hadoop software library, which functions as a framework, plays a critical 

role in processing Big Data. It allows vast amounts of data to be efficiently handled in 

distributed processing systems across clusters of computers, utilizing simple 



 

 

20 

 

programming models. Hadoop is designed to scale from a single server to thousands of 

machines, each providing local computation and storage. Rather than relying on 

hardware for high availability, the framework is engineered to detect and manage 

failures at the application level, ensuring a highly available service even when individual 

machines are prone to breakdowns. 

Components of the Hadoop Community Package: 

File system and OS-level abstractions 

A MapReduce engine (either MapReduce or YARN) 

The Hadoop Distributed File System (HDFS) 

Java Archive (JAR) files 

Scripts to initiate Hadoop 

Source code, documentation, and a contribution section 

Key Activities in Big Data Management: 

Storage: Big Data must be gathered into a unified repository, though it doesn’t need to 

reside in a single physical database. 

Processing: The process involves more complexity than traditional methods, including 

data cleansing, enrichment, calculation, transformation, and algorithm execution. 

Access: For Big Data to be useful, it must be easily searchable, retrievable, and 

presented in a way that aligns with business objectives. Without this, the data holds no 

real value for business purposes. 

1.8.1 What is Big Data Analytics? 

"Big Data Analytics" entails the following: 

1. Technology-Enabled Analytics: 

o Uses data analytics and visualization tools from leading vendors like IBM, 

Tableau, SAS, R Analytics, Statistica, and World Programming Systems 

(WPS) to process and analyze big data effectively. 

2. Insightful Business Steering: 



 

 

21 

 

o Aims to gain meaningful insights into business operations, customer 

demographics, vendor relationships, etc., to make informed decisions and 

enhance strategies. 

o Example: Personalized recommendations from online retailers 

demonstrate the use of data analytics to understand customer preferences 

and offer relevant products or services. 

3. Competitive Edge: 

o Provides findings enabling quicker and better decision-making, granting a 

competitive advantage in the market. 

4. Collaboration Among IT, Business Users, and Data Scientists: 

o Involves close collaboration among IT, business users, and data scientists 

to leverage big data analytics effectively. 

o Refer to Figure 3.3 for likely illustrating the interplay and collaboration 

among these communities. 

5. Handling Large and Varied Datasets: 

o Deals with datasets surpassing current storage and processing 

capabilities, requiring advanced technologies and techniques for analysis. 

6. Efficient Code-to-Data Processing: 

o Involves moving processing code to data rather than moving large data 

volumes, enhancing efficiency, especially for distributed processing. 

1.9 What Big Data isn’t? 

Big data isn't just about volume; it encompasses variety and velocity. It's not solely 

reliant on technology but also on strategic analysis. Big data isn't exclusive to large 

organizations; small and medium-sized businesses can benefit too. Figure 1.12 clearly 

depicts what is big data and figure 1.13 describes what big data isn’t. 

 



 

 

22 

 

 

 

Figure 1.12 What is big Data Analytics? 

 

Figure 1.13 What is Big Data Analytics isn’t? 

1.9.1 Classification of analytics involves categorizing different types of data 

analysis methods based on their objectives and techniques. 

1. Descriptive Analytics: 

 Definition: Descriptive analytics involves examining historical data to uncover 

patterns, trends, or insights. 



 

 

23 

 

 Techniques: It primarily uses data aggregation and data mining techniques to 

summarize and analyze historical data. 

 Advantages: 

o Provides quick reports on Return on Investment (ROI) by showing how 

performance achieved business or target goals. 

o Helps identify gaps and performance issues early, before they become 

significant problems. 

o Enables the identification of specific learners who may require additional 

support or resources. 

o Helps analyze the value and impact of course design and learning 

resources. 

2. Predictive Analytics: 

 Definition: Predictive analytics utilizes algorithms and machine learning to 

identify trends in data and forecast future behaviors or outcomes. 

 Techniques: It involves statistical modeling and machine learning algorithms to 

predict future trends or events based on historical data. 

 Advantages: 

o Personalizes training needs by identifying individual gaps, strengths, and 

weaknesses, offering tailored learning resources. 

o Helps retain talent by tracking employee career progression and 

forecasting required skills for career advancement. 

o Supports employees falling behind by offering intervention support before 

their performance declines significantly. 

o Simplifies reporting and visuals for better decision-making. 

3. Prescriptive Analytics: 

 Definition: Prescriptive analytics generates recommendations and decisions 

based on computational findings from algorithmic models. 



 

 

24 

 

 Techniques: It involves developing specific algorithmic models to generate 

automated recommendations or decisions based on identified problems or 

desired outcomes. 

 Example: If predictive analytics reveals that learners lacking a specific skill may 

not complete a course, prescriptive analytics can recommend additional training 

resources to acquire the missing skill. 

 Considerations: Accuracy of recommendations depends on the quality of data 

and algorithmic models, which may need customization for different situations. 

Table 1.4 Comparison of Analytics 1.0 vs 2.0 vs 3.0 

 

1.9.2 Comparison: 

Table 1.4 shows the comparative study of various analytics in detail. In a nutshell, 

 Descriptive Analytics: Focuses on historical data. 

 Predictive Analytics: Uses historical data to forecast future possibilities. 

 Prescriptive Analytics: Takes forecasted outcomes from predictive analytics 

and predicts consequences for these outcomes. 



 

 

25 

 

These analytics types progressively build upon each other, starting from historical data 

analysis to forecasting future possibilities and recommending actions based on those 

forecasts. 

1.9.3 Greatest Challenges that Prevent Businesses from  Capitalizing on Big Data   

The greatest challenges that prevent businesses from capitalizing on big data, aligned 

and clearly presented: 

1. Executive Sponsorship: Securing executive sponsorship for investments in big 

data initiatives and related activities, such as training. 

2. Information Sharing: Encouraging business units to share information across 

organizational silos. 

3. Skills Gap: Finding skilled business analysts and data scientists capable of 

managing and deriving insights from large, varied datasets. 

4. Scalability: Developing an approach to scale storage and processing capabilities 

rapidly and elastically to handle large volumes, velocities, and varieties of big 

data. 

5. Data Utilization: Deciding whether to use structured or unstructured, internal or 

external data for business decision-making. 

6. Reporting and Visualization: Choosing the best methods for presenting 

findings and analyses of big data in a clear and understandable visual format. 

7. Actionable Insights: Determining how to effectively act on the insights 

generated from big data analysis. 

1.9.4 Top Challenges Facing Big Data 

1. Scale: 

o Storage Solutions: Need to choose between RDBMS and NoSQL to 

handle large volumes, velocity, and variety of data. 

o Scaling Methods: Deciding whether to scale vertically (adding more 

power to existing machines) or horizontally (adding more machines). 

2. Security: 



 

 

26 

 

o Weak Security in NoSQL: Many NoSQL platforms lack robust 

authentication and authorization mechanisms, risking sensitive data like 

credit card and personal information. 

3. Schema: 

o Need for Dynamic Schemas: Traditional rigid schemas are outdated; 

dynamic schemas are required to accommodate the flexible nature of big 

data. 

4. Continuous Availability: 

o 24/7 Support: Ensuring continuous availability despite the built-in 

downtime of most RDBMS and NoSQL platforms. 

5. Consistency: 

o Consistency Models: Decision on whether to opt for strong consistency 

or eventual consistency in data processing and storage. 

6. Partition Tolerance: 

o Building Tolerant Systems: Creating systems that can handle both 

hardware and software failures effectively. 

7. Data Quality: 

o Maintaining Quality: Ensuring data accuracy, completeness, timeliness, 

and having appropriate metadata. 

1.9.5 Why is Big Data Analytics Important? 

1. Reactive – Business Intelligence: 

o Historical Data Analysis: Helps businesses make faster, better decisions 

by analyzing past data and providing relevant information through 

dashboards, alerts, and notifications. 

o Reporting: Supports pre-specified reports and ad hoc querying. 

2. Reactive – Big Data Analytics: 

o Static Data Analysis: Analysis is performed on large datasets but 

remains reactive as it is based on static data. 

3. Proactive – Analytics: 



 

 

27 

 

o Futuristic Decision Making: Utilizes data mining, predictive modeling, 

text mining, and statistical analysis. 

o Limitations: Traditional database management practices impose storage 

and processing limitations. 

4. Proactive – Big Data Analytics: 

o High-Performance Analytics: Analyzes terabytes, petabytes, exabytes of 

data to extract relevant information and solve complex problems quickly. 

o Advanced Techniques: Involves high-performance analytics for rapid 

insights. 

1.9.6 Technologies to Meet Big Data Challenges 

1. Cheap and Abundant Storage: 

o Affordable storage solutions are essential to handle large volumes of data. 

2. Faster Processors: 

o Necessary to speed up the processing of big data. 

3. Open-Source, Distributed Platforms: 

o Platforms like Hadoop provide cost-effective solutions for big data 

processing. 

4. Parallel Processing and Clustering: 

o Distributing processing tasks across multiple machines using clustering, 

virtualization, and large grid environments for high connectivity and 

throughput. 

5. Cloud Computing 

1.10 Data Science Overview 

 Definition: Data science is the science of extracting knowledge from data by 

uncovering hidden patterns using statistical and mathematical techniques. 

 Interdisciplinary Nature: It integrates fields like mathematics, statistics, 

information technology, machine learning, data engineering, probability models, 

statistical learning, and pattern recognition. 



 

 

28 

 

 Applications: Data science is applied in numerous areas including weather 

predictions, oil drilling, seismic activity monitoring, financial fraud detection, 

terrorist network analysis, global economic impact studies, sensor logs, social 

media analytics, customer churn, market basket analysis, collaborative filtering, 

and regression analysis. 

1.10.1 Skills Required for Data Scientists: 

1. Business Acumen Skills: 

 Understanding of Domain: Knowledge of the business field. 

 Business Strategy: Ability to align data science work with business strategies. 

 Problem Solving: Skills to tackle business problems using data insights. 

 Communication: Effective communication skills to convey findings. 

 Presentation: Proficiency in presenting data insights clearly. 

 Inquisitiveness: Curiosity and a drive to explore data for insights. 

2. Technology Expertise: 

 Technical Skills: Mastery of relevant technical skills is essential for data 

scientists. Specific skills were not listed in the provided text, but generally include 

programming, data manipulation, and knowledge of big data tools and 

frameworks. 

The responsibilities of the Data Scientists is given in the Figure 1.14 



 

 

29 

 

 

Figure 1.14 Data Scientist : your new best friend!!! 

1.10.2 Terminologies Used in Big Data Environments 

1. In-Memory Analytics: 

 Definition: Processing data directly in memory (RAM) for faster analysis. 

 Advantage: Significantly speeds up data analysis by reducing the time needed 

to read and write to disk. 

2. In-Database Processing: 

 Definition: Performing data processing within the database itself. 

 Advantage: Enhances performance by minimizing data movement and 

leveraging database capabilities for analytics. 

3. Symmetric Multiprocessor System (SMP): 

 Definition: A system where multiple processors share a single, coherent 

memory space and operate under a single operating system instance. 

 Advantage: Facilitates easier programming and management. 

4. Massively Parallel Processing (MPP): 



 

 

30 

 

 Definition: A system that uses many independent processors to perform tasks 

simultaneously. 

 Advantage: Allows for handling large datasets and complex computations 

efficiently. 

5. Difference between Parallel and Distributed Systems: 

 Parallel Systems: Multiple processors working on different parts of a single task 

within a shared memory environment. 

 Distributed Systems: Multiple independent systems working on separate tasks, 

often communicating over a network. 

6. Shared Nothing Architecture: 

 Definition: Each node in the system operates independently and does not share 

memory or storage. 

 Advantage: Enhances scalability and fault tolerance, as failure in one node does 

not affect others. 

1.11. CAP Theorem (Brewer’s Theorem): The CAP theorem posits that in a 

distributed computing environment (a collection of interconnected nodes that share 

data), it is impossible to achieve all three of the following guarantees simultaneously. At 

best, only two of the three can be achieved: 

1. Consistency: 

o Definition: Every read fetches the latest write. 

o Implication: All nodes return the same, most recent data. 

2. Availability: 

o Definition: Every request (read or write) receives a response, regardless 

of the individual state of any node. 

o Implication: The system is operational and responsive at all times. 

3. Partition Tolerance: 



 

 

31 

 

o Definition: The system continues to operate despite network partitions 

(communication breakdowns between nodes). 

o Implication: The system remains functional even if parts of it cannot 

communicate with each other. 

1.11.1 Real-Life Analogy: Consider a training institute, "XYZ," with 50 instructors and a 

training coordinator. Each morning, instructors check their schedules with Amey, the 

office administrator. When the institute experiences a surge in training requests and 

expands its instructor pool, the system managing the schedules must adapt: 

 Consistency: If any schedule is updated, all instructors should see the updated 

schedule immediately. 

 Availability: Instructors should always be able to access their schedules, even if 

Amey is busy or the system is under load. 

 Partition Tolerance: The scheduling system should continue to function even if 

some parts of the network are down or overloaded. 

1.12 Basic Availability, Soft State and Eventual Consistency 

Basic availability ensures that a system remains operational and accessible 

even in the event of network failures, and it can tolerate temporary 

inconsistencies. 

Soft state denotes that the state of the system can change without new input, 

which is essential for achieving eventual consistency. 

Eventual consistency means that if no additional updates are made to a 

specific data item for a sufficiently long period, all users will eventually observe 

the same value for that item. 

1.13 Top Analytics Tools 

 R 

R is a language designed for statistical computing and graphics, and it's also 

utilized for big data analysis. It offers a wide range of statistical tests and 

features: 



 

 

32 

 

Efficient Data Handling: Provides robust facilities for data storage and 

management. 

Array and Matrix Operations: Offers a set of operators for performing calculations 

on arrays, especially matrices. 

Integrated Tools: Features a comprehensive suite of big data tools for data 

analysis. 

Graphical Capabilities: Includes tools for creating visual data representations, 

both on-screen and for print. 

 Apache Spark 

Apache Spark is a powerful open-source tool for big data analytics. It provides 

over 80 high-level operators that simplify the development of parallel applications 

and is used by many organizations to handle large datasets. Key features 

include: 

Enhanced Performance: Runs applications in a Hadoop cluster up to 100 times 

faster in-memory and ten times faster on disk. 

Rapid Processing: Known for its lightning-fast processing capabilities. 

Advanced Analytics: Supports complex analytical tasks. 

Hadoop Integration: Seamlessly integrates with Hadoop and utilizes existing 

Hadoop data. 

 Plotly 

Plotly is an analytics tool that enables users to create and share interactive 

charts and dashboards online. Notable features include: 

Data Visualization: Transforms data into visually appealing and informative 

graphics. 

Data Provenance: Offers detailed information on data origins for audited 

industries. 

Public Hosting: Provides unlimited file hosting through its free community plan. 

 Lumify 

Lumify is a platform for big data fusion, analysis, and visualization, designed to 

help users uncover connections and explore relationships in their data. Its 

features include: 



 

 

33 

 

Graph Visualization: Supports both 2D and 3D graph visualizations with various 

automatic layouts. 

Link Analysis: Offers tools for analyzing relationships between entities in the 

graph. 

Content Ingestion: Includes specific elements for processing and interfacing with 

textual content, images, and videos. 

Workspace Organization: Allows organization of work into projects or 

workspaces. 

Scalable Technology: Built on established, scalable big data technologies. 

 IBM SPSS Modeler 

IBM SPSS Modeler is a predictive analytics platform for big data. It provides 

predictive modeling and delivers insights to various stakeholders. Features 

include: 

Insight Discovery: Quickly analyze both structured and unstructured data to find 

insights and solve problems. 

User-Friendly Interface: Designed with an intuitive interface suitable for all users. 

Deployment Options: Offers flexible deployment choices, including on-premises, 

cloud, and hybrid. 

Algorithm Selection: Facilitates quick selection of the best-performing algorithms 

based on model performance. 

MongoDB 

MongoDB is a NoSQL, document-oriented database developed in C and C++. It is an 

open-source tool available for free and supports various operating systems, including 

Windows Vista and later, OS X (10.7 and up), Linux, Solaris, and FreeBSD. 

Main Features: 

Aggregation: Advanced data processing and aggregation capabilities. 

Ad Hoc Queries: Supports flexible and dynamic querying. 

BSON Format: Uses BSON (Binary JSON) for data storage. 

Sharding: Distributes data across multiple servers to manage large datasets. 

Indexing: Provides various indexing options for faster data retrieval. 



 

 

34 

 

Replication: Ensures data redundancy and high availability. 

Server-Side JavaScript: Executes JavaScript code on the server. 

Schemaless: Allows for flexible data modeling without a fixed schema. 

Capped Collections: Supports collections with a fixed size, where old data is 

automatically overwritten. 

MongoDB Management Service (MMS): Offers tools for monitoring and backup. 

Load Balancing: Distributes workloads evenly across servers. 

File Storage: Manages and stores large files. 

Lets sum up 

The content discussed in this section revolves around Apache Hadoop and its role in 

handling Big Data through distributed processing across clusters. It emphasizes 

Hadoop's scalability, fault tolerance, and its components like HDFS and 

MapReduce/YARN. Big Data analytics are highlighted as crucial for gaining insights, 

enhancing decision-making, and maintaining competitive advantages through 

technologies like predictive and prescriptive analytics. Challenges in capitalizing on Big 

Data include executive sponsorship, skills gaps, scalability, and data utilization issues. 

The importance of analytics tools like R, Apache Spark, Plotly, Lumify, IBM SPSS 

Modeler, and MongoDB in managing and analyzing large datasets is also covered, 

along with their respective features and benefits. 

 

UNIT 1 SUMMARY 
 

 Classification of Digital Data 

o Structured Data: Organized and easily searchable data, typically stored in 

databases (e.g., SQL databases). 

o SemiStructured Data: Contains tags or markers to separate data 

elements, but not strictly organized in relational databases (e.g., JSON, 

XML). 

o Unstructured Data: Lacks a predefined format or organization, making it 

difficult to collect, process, and analyze (e.g., text documents, images). 



 

 

35 

 

 Introduction to Big Data 

o Characteristics: Volume, Velocity, Variety, Veracity, and Value. 

o Evolution: Growth from traditional databases and data processing 

techniques to handling vast amounts of diverse data types. 

o Definition: Large and complex data sets that traditional data processing 

software cannot adequately handle. 

o Challenges with Big Data: Data storage, processing speed, data 

integration, data quality, and security. 

 Other Characteristics of Data 

o Variability: Data flows can be highly inconsistent with periodic peaks. 

o  Complexity: Data comes from multiple sources, making it difficult to link, 

match, cleanse, and transform data across systems. 

 Big Data versus Traditional Business Intelligence (BI) 

o Traditional BI: Focuses on descriptive and diagnostic analytics with 

structured data. 

o Big Data: Encompasses a broader range of data types and advanced 

analytics, including predictive and prescriptive analytics. 

 Data Warehouse and Hadoop 

o Data Warehouse: Central repository for structured data from various 

sources, optimized for query and analysis. 

o Hadoop: Opensource framework that allows for the distributed processing 

of large data sets across clusters of computers using simple programming 

models. 

 

 Environment for Big Data Analytics 

o Classification of Analytics: Descriptive, Diagnostic, Predictive, and 

Prescriptive analytics. 

o Challenges: Data privacy, data security, data governance, integration of 

diverse data sources, and scalability of analytics solutions. 

 Importance of Big Data Analytics 



 

 

36 

 

o Enables businesses to gain insights from data, optimize operations, 

enhance customer experiences, and drive innovation. 

 Data Science and Data Scientist 

o Data Science: Interdisciplinary field focused on extracting knowledge and 

insights from data. 

o Data Scientist: Professional skilled in statistics, programming, and domain 

expertise to analyze and interpret complex data. 

 Terminologies in Big Data Environments 

o Hadoop Ecosystem: Includes tools like HDFS (Hadoop Distributed File 

System), MapReduce, YARN, and related projects like Spark, Hive, and 

Pig. 

o NoSQL: Databases designed for handling unstructured data (e.g., 

MongoDB, Cassandra). 

 Top Analytics Tools 

o Hadoop: Framework for distributed storage and processing. 

o Spark: Fast, in-memory data processing engine. 

o Tableau: Data visualization tool. 

o R: Statistical computing and graphics. 

o Python: Versatile programming language for data analysis. 

o SAS: Advanced analytics and business intelligence software. 

o RapidMiner: Data science platform for machine learning and predictive 

analytics. 

o QlikView: Business intelligence and data visualization tool. 

o Excel: Widely used spreadsheet application for basic data analysis. 

o TensorFlow: Opensource library for machine learning and deep learning. 

 



 

 

37 

 

Glossary 

 Structured Data: Organized and easily searchable data, typically stored in 

databases (e.g., SQL databases). 

 Semi-Structured Data: Contains tags or markers to separate data elements but 

not strictly organized in relational databases (e.g., JSON, XML). 

 Unstructured Data: Lacks a predefined format or organization, making it difficult 

to collect, process, and analyze (e.g., text documents, images). 

 Big Data Characteristics: Volume, Velocity, Variety, Veracity, and Value. 

 Data Warehouse: Central repository for structured data from various sources, 

optimized for query and analysis. 

 Hadoop: Open-source framework for distributed processing of large data sets 

across clusters of computers using simple programming models. 

 Descriptive Analytics: Analytics that describe what has happened. 

 Predictive Analytics: Analytics that predict what might happen in the future. 

 Prescriptive Analytics: Analytics that prescribe actions to achieve desired 

outcomes. 

 NoSQL: Non-relational databases designed for large volumes of unstructured 

and semi-structured data. 

 Hadoop Ecosystem: Includes tools like HDFS (Hadoop Distributed File 

System), MapReduce, YARN, and related projects like Spark, Hive, and Pig. 

 Data Scientist: Professional skilled in statistics, programming, and domain 

expertise to analyze and interpret complex data.  

 HDFS (Hadoop Distributed File System): The primary storage system used by 

Pig in MapReduce mode. It allows Pig to read input files, store intermediate data, 

and write output files. 

 



 

 

38 

 

Checkup Your Progress 

EXERCISE 1: Fill in each gap with the right word from the list 

1. The three classifications of digital data are _______________, semi-

structured data, and unstructured data. (Structured, Categorized, Filtered) 

2. Big Data is characterized by its volume, variety, velocity, _______________, 

and value. (Veracity, Validity, Variability) 

3. One of the primary challenges with Big Data is managing its vast 

_______________. (Quantity, Quality, Quirkiness) 

4. Traditional Business Intelligence typically involves the use of a 

_______________, while Big Data often utilizes Hadoop for data processing. 

(, Data Lake, Data Mart) Data Warehouse 

5. In Big Data environments, a term used to describe a system that is eventually 

consistent but not always immediately is _______________. (BASE, ACID, 

CAP) 

 

EXERCISE 2: Read the questions below and circle if the answer is True 

 

1. Structured data is typically stored in databases that are difficult to search – True/ 

False 

2.  Big Data is defined solely by its large volume – True/ False 

3. Traditional Business Intelligence focuses on predictive analytics- True/ False 

4. Hadoop is a closed-source framework for data processing– True/ False 

5. Data Science involves extracting insights from data using statistical methods- 

True/ False 

 

 

EXERCISE 3: Choose the correct answer 

 

1. The term used to describe the rapid increase in the volume of data is: 



 

 

39 

 

a) Velocity 

b) Volume 

c) Variety 

2. Hadoop is an example of: 

a) Data Mart 

b) Data Warehouse 

c) Big Data technology 

 

3. The primary language used for querying data in Hadoop is: 

a) SQL 

b) Pig Latin 

c) R 

4. A data scientist's role typically includes: 

a) Data entry 

b) Data analysis and interpretation 

c) Database administration 

5. In the context of Big Data, the term "velocity" refers to: 

a) The speed at which data is generated and processed 

b) The variety of data formats 

c) The accuracy of data 

 

EXERCISE 4: Match the following  

 

1. Structured Data  - The large amount of data generated 

2. Volume - Used in traditional Business Intelligence for structured data 

storage and analysis 

3. Data 

Warehouse        

- Has a defined data model and format 

4. BASE - A framework used in Big Data environments for processing 

large                               datasets 



 

 

40 

 

5. Hadoop - Eventually consistent, available, and partition-tolerant 

 

EXERCISE 5: Self-Assessment Questions  

 

1. Differentiate between structured, semi-structured, and unstructured data with 

examples in the context of digital data classification. 

2. Explain two characteristics of Big Data and how they differ from traditional data 

management approaches. 

3. List two challenges commonly associated with Big Data analytics. 

4. Compare the roles of Data Science and traditional Business Intelligence in 

handling Big Data. 

5. Define the concept of "Basically Available, Soft State, Eventual Consistency" 

(BASE) in the context of Big Data systems. 

 

 

Answers for Checkup Your Progress 

EXERCISE 1: 

1. Structured 2. Veracity 3. Quantity 4. Data Warehouse 5. BASE. 

 

EXERCISE 2: 

      1. False 2. False 3. False 4. False 5. True 

 

EXERCISE 3: 

1. b) 2. c) 3. b) 4. b) 5. a) 

EXERCISE 4: 



 

 

41 

 

1.C, 2.A, 3.B, 4.E, 5.D. 

 

Open Source E-content Links: 

1. https://www.coursera.org/specializations/big-data 

2. https://www.cloudera.com/services-and-support/tutorials.html 

3. https://hadoop.apache.org/docs/current/ 

4. https://learn.mongodb.com/ 

 

References: 

1. Classification of Digital Data: Structured, Semi-Structured, and Unstructured 

Data. (2023). Retrieved June 28, 2024, from 

https://www.investopedia.com/terms/u/unstructured-data.asp 

2. Introduction to Big Data: Characteristics, Evolution, Definition, Challenges. 

(2023). Retrieved June 28, 2024, from 

https://www.sciencedirect.com/topics/computer-science/big-data 

3. Big Data vs Traditional Business Intelligence: Comparison. (2023). Retrieved 

June 28, 2024, from https://www.forbes.com/sites/bernardmarr/2016/04/28/big-

data-vs-traditional-business-intelligence-whats-the-difference/ 

4. Data Warehouse and Hadoop: Overview. (2023). Retrieved June 28, 2024, from 

https://www.ibm.com/analytics/learn/data-warehouse/ 

5. Environment of Big Data Analytics: Classification of Analytics, Challenges, 

Importance. (2023). Retrieved June 28, 2024, from 

https://www.analyticsvidhya.com/blog/2021/05/introduction-to-big-data-analytics/ 

6. Data Science and Data Scientist: Roles and Terminologies. (2023). Retrieved 

June 28, 2024, from https://www.kdnuggets.com/2020/02/data-science-vs-data-

analytics-vs-machine-learning.html 

7. Basically Available Soft State Eventual Consistency (BASE) Model. (2023). 

Retrieved June 28, 2024, from 



 

 

42 

 

https://www.academia.edu/37899493/BASE_Basically_Available_Soft_State_Ev

entual_Consistency_A_Model_for_Distributed_Systems 

8. Top Analytics Tools: Overview. (2023). Retrieved June 28, 2024, from 

https://www.analyticsvidhya.com/blog/2021/06/top-10-analytics-tools-for-data-

analysis/ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

43 

 

UNIT-II:TECHNOLOGY LANDSCAPE 

UNIT II OBJECTIVE 

The objectives of this unit are to provide a comprehensive understanding of NoSQL 

databases, including their structure, types, and use cases. It aims to analyze the 

differences between SQL and NoSQL databases in terms of data models, schema 

flexibility, consistency models, and scalability. Additionally, the unit provides an 

overview of Hadoop, focusing on its core components such as HDFS, MapReduce, 

YARN, and common utilities for distributed data processing. Students will learn about 

the architecture, scalability, fault tolerance, and high throughput of HDFS, as well as 

how to process large datasets using the MapReduce programming model.  

The unit also covers managing resources and applications with Hadoop YARN, 

exploring its resource management, job scheduling, and application management 

capabilities. Finally, it introduces key components of the Hadoop ecosystem, such as 

Hive, Pig, HBase, Spark, and Oozie, and teaches how to interact with Hadoop through 

CLI. 

Unit Summary 

1. Introduction to NoSQL 

o Comparison of SQL and NoSQL Databases 

o Overview of NoSQL Databases 

2. Hadoop Ecosystem 

o Introduction to Hadoop 

o Differences between RDBMS and Hadoop 

o Distributed Computing Challenges 

o Detailed Overview of Hadoop Distributed File System (HDFS) 

o Processing Data with Hadoop 

o Managing Resources and Applications with Hadoop YARN 

o Interaction with Hadoop Ecosystem 



 

 

44 

 

 

2.1 NoSQL (NOT ONLY SQL) 

The term NoSQL was first coined by Carlo Strozzi in 1998 to name his lightweight, 

open-source, relational database that did not expose the standard SQL interface. Johan 

Oskarsson, who was then a developer at last.fm, in 2009 reintroduced the term NoSQL 

at an event called to discuss open-source distributed network. The #NoSQL was coined 

by Eric Evans and few other database people at the event found it suitable to describe 

these non-relational databases. 

Few features of NoSQL databases are as follows: 

1. They are open source. 

2. They are non-relational. 

3. They are distributed. 

4. They are schema-less. 

5. They are cluster friendly. 

6. They are born out of 21st century web applications. 

2.1.1 Where is it Used? 

NoSQL databases are widely used in big data and other real-time web applications. 

Refer Figure 2.1. NoSQL databases is used to stock log data which can then be pulled 

for analysis. Likewise it is used to store social media data and all such data which 

cannot be stored and analyzed comfortably in RDBMS. 

2.1.2 What is it? 

NoSQL stands for Not Only SQL. These are non-relational, open source, distributed 

databases. They are hugely popular today owing to their ability to scale out or scale 

horizontally and the adeptness at dealing with a rich variety of data; structured, semi-

structured and unstructured data. Refer Figure 2.2 for additional features of NoSQL. 

NoSQL databases. 



 

 

45 

 

1. Are non-relational: They do not adhere to relational data model. In fact, they 

are either key-value pairs or document-oriented or column-oriented or graph-

based databases. 

 

Figure 2.1: Where to use NoSQL? 

 

Figure 2.2: What is NoSQL? 

2.  Are distributed: They are distributed meaning the data is distributed across 

several nodes in a cluster constituted of low-cost commodity hardware. 

3. Offer no support for ACID properties (Atomicity, Consistency, Isolation, and 

Durability): They do not offer support for ACID properties of transactions. On the 

contrary, they have adherence to Brewer’s CAP (Consistency, Availability, and 

Partition tolerance) theorem and are often seen compromising on consistency in 

favor of availability and partition tolerance. 

4. Provide no fixed table schema:  NoSQL databases are becoming increasingly 

popular owing to their support for flexibility to the schema. They do not mandate 

for the data to strictly adhere to any schema structure at the time of storage. 

2.1.3 Types of NoSQL Databases 



 

 

46 

 

We have already stated that NoSQL databases are non-relational. They can be broadly 

classified into the following: (Refer Figure 2.3). 

1. Key-value or the big hash table. 

2. Schema-less. 

 

Figure 2.3: Types of NoSQL databases 

 Let us take a closer look at key-value and few other types of schema-less databases: 

1. Key-value: It maintains a big hash table of keys and values. For example, Dynamo, 

Redis, Riak, etc.  

Sample Key-Value Pair in Key-Value Database 

Key Value 

First Name   Simmonds 

Last Name    David 

2. Document: It maintains data in collections constituted of documents. For example, 

MongoDB, Apache CouchDB, Couchbase, MarkLogic, etc. 

Sample Document in Document Database 

{ 

“Book Name”:  “Fundamentals of Business Analytics”, 

“Publisher”: “ Wiley India”, 



 

 

47 

 

“ Year of Publication”: “2011” 

} 

3. Column: Each storage block has data from only one column. For example: 

Cassandra, HBase, etc. 

4. Graph: They are also called network database. A graph stores data in nodes. For 

example, Neo4j, HyperGraphDB, etc. 

Sample Graph in Graph Database 

 

Refer Table 2.1 for popular schema-less databases. 

Table 2.1 Popular schema-less databases 

Key–Value Data 

Store 

Column-Oriented 

Data Store 

Document Data 

Store 

 

Graph Data Store 

Risk Cassandra MongoDB InfiniteGraph 

Redis HBase CouchDB Neo4j 

Membase HyperTable RavenDB AllegroGraph 

2.1.4 Why NoSQL? 



 

 

48 

 

1. It has scale out architecture instead of the monolithic architecture of relational 

databases.   

2. It can house large volumes of structured, semi-structured, and unstructured 

data. 

3. Dynamic schema: NoSQL database allows insertion of data without a pre-

defined schema. In other words, it facilitates application changes in real time, 

which thus supports faster development, easy code integration, and requires less 

database administration. 

  4. Auto-sharding: It automatically spreads data across an arbitrary number of 

servers. The application in question is more often not even aware of the 

composition of the server pool. It balances the load of data and query on the 

available servers; and if and when a server goes down, it is quickly replaced 

without any major activity disruptions. 

  5. Replication: It offers good support for replication which in turn guarantees 

high availability, fault tolerance, and disaster recovery. 

 2.1.5 Advantages of NoSQL   

Let us enumerate the advantages of NoSQL. Refer Figure 2.5.  

1. Can easily scale up and down: NoSQL database supports scaling rapidly and 

elastically and even allows to scale to the cloud. 



 

 

49 

 

 

Figure 2.5: Advantages of NoSQL  

(a) Cluster scale: It allows distribution of database across 100+ nodes often in 

multiple data centers.  

 (b) Performance scale: It sustains over 100,000+ database reads and writes per 

second.  

 (c) Data scale: It supports housing of 1 billion+ documents in the database. 

2. Doesn’t require a pre-defined schema: NoSQL does not require any adherence to 

pre-defined schema.  It is pretty flexible. For example, if we look at MongoDB, the 

documents (equivalent of records in RDBMS) in a collection (equivalent of table in 

RDBMS) can have different sets of key–value pairs.  {_id: 101,“BookName”: 

“Fundamentals of Business Analytics”, “AuthorName”: “Seema Acharya”,  “Publisher”: 

“Wiley India”}  {_id:102, “BookName”:“Big Data and Analytics”}  

 3. Cheap, easy to implement: Deploying NoSQL properly allows for all of the benefits 

of scale, high availability, fault tolerance, etc. while also lowering operational costs.   

4. Relaxes the data consistency requirement: NoSQL databases have adherence to 

CAP theorem (Consistency, Availability, and Partition tolerance). Most of the NoSQL 

databases compromise on consistency in favor of availability and partition tolerance. 

However, they do go for eventual consistency.  



 

 

50 

 

 5. Data can be replicated to multiple nodes and can be partitioned: There are two 

terms that are discussed here:   

(a) Sharding: Sharding is when different pieces of data are distributed across 

multiple servers.  NoSQL databases support auto-sharding; this means that they can 

natively and automatically spread data across an arbitrary number of servers, without 

requiring the application to even be aware of the composition of the server pool. 

Servers can be added or removed from the data layer without application downtime. 

This would mean that data and query load are automatically balanced across 

servers, and when a server goes down, it can be quickly and transparently replaced 

with no application disruption.  

(b) Replication: Replication is when multiple copies of data are stored across the 

cluster and even across data centers. This promises high availability and fault 

tolerance.  

 

Figure 2.6: What we miss with NoSQL? 

2.1.6 What We Miss with NoSQL?  With NoSQL around, we have been able to counter 

the problem of scale (NoSQL scales out). There is also the flexibility with respect to 

schema design. However, there are few features of conventional RDBMS that are 

greatly missed. Refer Figure 2.6. 

 NoSQL does not support joins. However, it compensates for it by allowing embedded 

documents as in  MongoDB. It does not have provision for ACID properties of 

transactions. However, it obeys the Eric  Brewer’s CAP theorem. NoSQL does not have 

a standard SQL interface but NoSQL databases such as  MongoDB and Cassandra 



 

 

51 

 

have their own rich query language [MongoDB query language and Cassandra  query 

language (CQL)] to compensate for the lack of it. One thing which is dearly missed is 

the easy  integration with other applications that support SQL.   

2.1.7 Use of NoSQL in Industry 

NoSQL is being put to use in varied industries. They are used to support analysis for 

applications such as web user data analysis, log analysis, sensor feed analysis, making 

recommendations for upsell and cross-sell, etc. Refer Figure 2.7. 

 

Figure 2.7: Use of NoSQL in industry 

2.1.8 NoSQL Vendors  

Refer Table 2.2 for few popular NoSQL vendors.  

Table 2.2 : Few popular NoSQL vendors 

Company Product Most Widely Used by 

Amazon DynamoDB LinkedIn, Mozilla 

Facebook Cassandra Netflix, Twitter, eBay 



 

 

52 

 

Google BigTable  Adobe Photoshop 

2.1.9 SQL versus NoSQL  

 Refer Table 2.3 for few salient differences between SQL and NoSQL.  

 

Figure 2.8 : Characterstics of NewSQL 

Table 2.3 SQL versus NoSQL 

SQL (Relational Database) NoSQL (Non-relational Database) 

Relational database Non-relational, distributed database 

Relational model Model-less approach 

Pre-defined schema Dynamic schema for unstructured data 

Table based databases Document-based, graph-based, wide column store, key–

value pairs 

Vertically scalable (by 

increasing system 

resources) 

Horizontally scalable (by creating a cluster of commodity 

machines) 

Uses SQL Uses UnQL (Unstructured Query Language) 

Not preferred for large 

datasets 

Largely preferred for large datasets 

Not a best fit for 

hierarchical data 

Best fit for hierarchical storage as it follows the key–value 

pair of storing data similar to JSON (Java Script Object 



 

 

53 

 

Notation) 

Emphasis on ACID 

properties 

Follows Brewer’s CAP theorem 

Excellent support from 

vendors 

Relies heavily on community support 

Supports complex 

querying and data 

keeping needs 

Does not have good support for complex querying 

Can be configured for 

strong consistency 

Few support strong consistency (e.g., MongoDB), some 

others can be configured for eventual consistency (e.g., 

Cassandra) 

Examples: Oracle, DB2, 

MySQL, MS SQL, 

PostgreSQL, etc. 

Examples: MongoDB, HBase, Cassandra, Redis, Neo4j, 

CouchDB, Couchbase, Riak, etc. 

2.1.10 NewSQL 

NewSQL is a modern type of database that combines the best features of both SQL and 

NoSQL databases. It aims to deliver the scalable performance of NoSQL systems for 

online transaction processing (OLTP) while maintaining the ACID (Atomicity, 

Consistency, Isolation, Durability) guarantees of traditional relational databases. 

NewSQL databases use the relational data model and SQL as their primary interface, 

providing the benefits of high scalability and robust transaction support.  

2.1.10.1 Characteristics of NewSQL   

Refer Figure 4.7 to learn about the characteristics of NewSQL. NewSQL is based on the 

shared nothing architecture with a SQL interface for application interaction.  

2.1.11 Comparison of SQL, NoSQL, and NewSQL  

Refer Table 2.4 for a comparative study of SQL, NoSQL and NewSQL.   



 

 

54 

 

Table 2.4 Comparative study of SQL, NoSQL and NewSQL 

 
SQL NoSQL NewSQL 

Adherence to ACID 

properties 

Yes No Yes 

OLTP/OLAP Yes No Yes 

Schema rigidity Yes No Maybe 

Adherence to data model Adherence to 

relational model 

 
 

Data Format Flexibility No Yes Maybe 

Scalability Scale up (Vertical 

Scaling) 

Scale out (Horizontal 

Scaling) 

Scale out 

Distributed Computing Yes Yes Yes 

Community Support Huge Growing Slowly 

growing 

Lets sum up 

NoSQL databases, coined to denote "Not Only SQL," emerged as a response to the 

limitations of traditional relational databases in handling modern web applications and 

big data scenarios. They are characterized by their non-relational, distributed nature, 

allowing them to store and process vast amounts of structured, semi-structured, and 

unstructured data efficiently.  

  Unlike traditional SQL databases, NoSQL databases like key-value stores (e.g., 

DynamoDB), document stores (e.g., MongoDB), column-oriented databases (e.g., 

Cassandra), and graph databases (e.g., Neo4j) offer schema flexibility, horizontal 

scalability, and robust fault tolerance through features like auto-sharding and replication. 

While they sacrifice ACID properties for improved scalability and availability based on 

the CAP theorem, they excel in scenarios requiring high performance and massive data 

throughput, such as social media analytics, real-time data processing, and IoT 

applications. Despite their advantages, NoSQL databases lack standardized SQL 



 

 

55 

 

interfaces and may require more application-specific integration efforts compared to 

traditional relational databases. They represent a critical evolution in database 

technology, addressing new challenges posed by modern data management needs. 

2.2 Hadoop  

 Hadoop is an open-source project of the Apache foundation. It is a framework written in 

Java, originally developed by Doug Cutting in 2005 who named it after his son’s toy 

elephant. He was working with Yahoo then. It was created to support distribution for 

“Nutch”, the text search engine. Hadoop uses Google’s  MapReduce and Google File 

System technologies as its foundation. Hadoop is now a core part of the  computing 

infrastructure for companies such as Yahoo, Facebook, LinkedIn, Twitter, etc. Refer 

Figure 2.9. 

 

Figure 2.9 : Hadoop 

2.2.1 Features of Hadoop   

Here are a few key features of Hadoop: 

1. It is optimized to handle massive quantities of structured, semi-structured, and 

unstructured data, using commodity hardware, that is, relatively inexpensive 

computers. 

2. Hadoop has a shared nothing architecture. 



 

 

56 

 

3. It replicates its data across multiple computers so that if one goes down, the data 

can still be processed from another machine that stores its replica. 

4. Hadoop is for high throughput rather than low latency. It is a batch operation 

handling massive quantities of data; therefore, the response time is not 

immediate.  

5. It complements On-Line Transaction Processing (OLTP) and On-Line Analytical 

Processing (OLAP).  However, it is not a replacement for a relational database 

management system.  

6. It is NOT good when work cannot be parallelized or when there are 

dependencies within the data.  

7. It is NOT optimized for processing small files; it works best with large data files 

and includes built-in replication for fault tolerance. 

 

2.2.2 Key Advantages of Hadoop 

Refer Figure 2.10 for a quick look at the key advantages of Hadoop. Some of them are 

as follows:   

1. Stores data in its native format: Hadoop’s data storage framework (HDFS – 

Hadoop Distributed File System) can store data in its native format. There is no 

structure that is imposed while keying in data or storing data. HDFS is pretty 

much schema-less. It is only later when the data needs to be processed that 

structure is imposed on the raw data.   

2. Scalable: Hadoop can store and distribute very large datasets (involving 

thousands of terabytes of data) across hundreds of inexpensive servers that 

operate in parallel.  



 

 

57 

 

 

Figure 2.10: Key advantages of Hadoop. 

3. Cost-effective: Owing to its scale-out architecture, Hadoop has a much-reduced 

cost/terabyte of storage and processing.  

4. Resilient to failure: Hadoop is fault-tolerant. It practices replication of data 

diligently which means whenever data is sent to any node, the same data also 

gets replicated to other nodes in the cluster, thereby ensuring that in the event of 

a node failure, there will always be another copy of data available for use.  

5. Flexibility: One of the key advantages of Hadoop is its ability to work with all 

kinds of data: structured, semi-structured, and unstructured data. It can help 

derive meaningful business insights from email conversations, social media data, 

click-stream data, etc. It can be put to several purposes such as log analysis, 

data mining, recommendation systems, market campaign analysis, etc.   

6. Fast: Processing is extremely fast in Hadoop as compared to other conventional 

systems owing to the “move code to data” paradigm.  Hadoop has a shared-

nothing architecture.  

2.2.3 Versions of Hadoop  

 There are two versions of Hadoop available (Refer Figure 2.11): 



 

 

58 

 

1. Hadoop 1.0   

2. Hadoop 2.0 

2.2.3.1 Hadoop 1.0  

 It has two main parts:  

1. Data storage framework: It is a general-purpose file system called Hadoop 

Distributed File System (HDFS). HDFS is schema-less. It simply stores data files. 

These data files can be in just about any format. The idea is to store files as 

close to their original form as possible. This is turn provides the business units 

and the organization the much needed flexibility and agility without being overly 

worried by what it can implement.  

2. Data processing framework: This is a simple functional programming model 

initially popularized by Google as MapReduce. It essentially uses two functions: 

the MAP and the REDUCE functions to process data. The “Mappers” take in a 

set of key–value pairs and generate intermediate data (which is another list of 

key–value pairs). The “Reducers” then act on this input to produce the output 

data.  The two functions seemingly work in isolation from one another, thus 

enabling the processing to be highly distributed in a highly-parallel, fault-tolerant, 

and scalable way.  

 

Figure 2.11: Versions of Hadoop 

There were, however, a few limitations of Hadoop 1.0. They are as follows:  



 

 

59 

 

1. The first limitation was the requirement for MapReduce programming expertise 

along with proficiency required in other programming languages, notably Java.   

2. It supported only batch processing which although is suitable for tasks such as 

log analysis, large-scale data mining projects but pretty much unsuitable for other 

kinds of projects. 

3. One major limitation was that Hadoop 1.0 was tightly computationally coupled 

with MapReduce, which meant that the established data management vendors 

were left with two options: Either rewrite their functionality in MapReduce so that 

it could be executed in Hadoop or extract the data from HDFS and process it 

outside of Hadoop. None of the options were viable as it led to process 

inefficiencies caused by the data being moved in and out of the Hadoop cluster.  

Now, let's discuss how Hadoop 2.0 addresses some of these limitations.  

2.2.3.2 Hadoop 2.0 

In Hadoop 2.0, HDFS continues to be the data storage framework. However, a new and 

separate resource management framework called Yet Another Resource Negotiator 

(YARN) has been added. Any application capable of dividing itself into parallel tasks is 

supported by YARN. YARN coordinates the allocation of subtasks of the submitted 

application, thereby further enhancing the flexibility, scalability, and efficiency of the 

applications. It works by having an ApplicationMaster in place of the erstwhile 

JobTracker, running applications on resources governed by a new NodeManager (in 

place of the erstwhile TaskTracker).  ApplicationMaster is able to run any application 

and not just MapReduce.   

This, in other words, means that the MapReduce Programming expertise is no 

longer required.  Furthermore, it not only supports batch processing but also real-time 

processing. MapReduce is no longer the only data processing option; other alternative 

data processing functions such as data standardization,  master data management can 

now be performed natively in HDFS.  



 

 

60 

 

 

Figure 2.12: Hadoop ecosystem 

2.2.4 Overview of Hadoop Ecosystems  

The components of the Hadoop ecosystem are shown in Figure 2.12. There are 

components available in the Hadoop ecosystem for data ingestion, processing, and 

analysis.  

Data Ingestion → Data Processing → Data Analysis 

Components that help with Data Ingestion are:   

1. Sqoop 

2. Flume 

Components that help with Data Processing are: 

1. MapReduce  

2. Spark  

Components that help with Data Analysis are: 

1. Pig  

2. Hive 

3. Impala 

HDFS  



 

 

61 

 

It is the distributed storage unit of Hadoop. It provides streaming access to file system 

data as well as file permissions and authentication. It is based on GFS (Google File 

System). It is used to scale a single cluster node to hundreds and thousands of nodes. 

It handles large datasets running on commodity hardware. HDFS is highly fault-tolerant. 

It stores files across multiple machines. These files are stored in redundant fashion to 

allow for data recovery in case of failure.  

HBase  

It stores data in HDFS. It is the first non-batch component of the Hadoop Ecosystem. It 

is a database on top of HDFS. It provides a quick random access to the stored data. It 

has very low latency compared to HDFS.  It is a NoSQL database, is non-relational and 

is a column-oriented database. A table can have thousands of columns. A table can 

have multiple rows. Each row can have several column families. Each column family 

can have several columns. Each column can have several key values. It is based on 

Google BigTable. This is widely used by Facebook, Twitter, Yahoo, etc.  

Difference between HBase and Hadoop/HDFS  

1. HDFS is the file system whereas HBase is a Hadoop database. It is like NTFS 

and MySQL.  

2. HDFS is WORM (Write once and read multiple times or many times). Latest 

versions support appending of data but this feature is rarely used. However, 

HBase supports real-time random read and write.  

3. HDFS is based on Google File System (GFS) whereas HBase is based on 

Google Big Table.  

4. HDFS supports only full table scan or partition table scan. Hbase supports 

random small range scan or table scan.   

5. Performance of Hive on HDFS is relatively very good but for HBase it becomes 

4–5 times slower.  

6. The access to data is via MapReduce job only in HDFS whereas in HBase the 

access is via Java APIs, Rest, Avro, Thrift APIs.  



 

 

62 

 

7. HDFS does not support dynamic storage owing to its rigid structure whereas 

HBase supports dynamic storage.   

8. HDFS has high latency operations whereas HBase has low latency operations.   

9. HDFS is most suitable for batch analytics whereas HBase is for real-time 

analytics.   

Hadoop Ecosystem Components for Data Ingestion 

1. Sqoop: Sqoop stands for SQL to Hadoop. Its main functions are 

a) Importing data from RDBMS such as MySQL, Oracle, DB2, etc. to Hadoop file 
system (HDFS, HBase, Hive).   

b) Exporting data from Hadoop File system (HDFS, HBase, Hive) to RDBMS 
(MySQL, Oracle, DB2).   

Uses of Sqoop  

a) It has a connector-based architecture to allow plug-ins to connect to external 
systems such as MySQL, Oracle, DB2, etc.  

b) It can provision the data from external system on to HDFS and populate tables 
in Hive and HBase. 

c) It integrates with Oozie allowing you to schedule and automate import and 

export tasks. 

2. Flume: Flume is an important log aggregator (aggregates logs from different 

machines and places them in HDFS) component in the Hadoop ecosystem. 

Flume has been developed by Cloudera. It is designed for high volume ingestion 

of event-based data into Hadoop. The default destination in Flume (called as sink 

in flume parlance) is HDFS. However, it can also write to HBase or Solr.  

Hadoop Ecosystem Components for Data Processing 

1. MapReduce: It is a programing paradigm that allows distributed and parallel 

processing of huge datasets. It is based on Google MapReduce. Google 



 

 

63 

 

released a paper on MapReduce programming paradigm in 2004 and that 

became the genesis of Hadoop processing model. The MapReduce  framework 

gets the input data from HDFS. There are two main phases: Map phase and the 

Reduce phase. The map phase converts the input data into another set of data 

(key–value pairs). This new intermediate dataset then serves as the input to the 

reduce phase. The reduce phase acts on the datasets  to combine (aggregate 

and consolidate) and reduce them to a smaller set of tuples. The result is then 

stored back in HDFS.   

2. Spark: It is both a programming model as well as a computing model. It is an 

open-source big data processing framework. It was originally developed in 2009 

at UC Berkeley’s AmpLab and became an  open-source project in 2010. It is 

written in Scala. It provides in-memory computing for Hadoop.  In Spark, 

workloads execute in memory rather than on disk owing to which it is much faster 

(10 to  100 times) than when the workload is executed on disk. However, if the 

datasets are too large to fit into the available system memory, it can perform 

conventional disk-based processing. It serves as a potentially faster and more 

flexible alternative to MapReduce. It accesses data from HDFS (Spark does not 

have its own distributed file system) but bypasses the MapReduce processing.  

Spark can be used with Hadoop coexisting smoothly with MapReduce (sitting on top 

of Hadoop YARN) or used independently of Hadoop (standalone). As a 

programming model, it works well with Scala, Python (it has API connectors for 

using it with Java or Python) or R programming language.  The following are the 

Spark libraries:  

a) Spark SQL: Spark also has support for SQL. Spark SQL uses SQL to help 

query data stored in disparate applications. 

b) Spark streaming: It helps to analyze and present data in real time.  

c) MLib: It supports machine learning such as applying advanced statistical 

operations on data in Spark Cluster.  

d) GraphX: It helps in graph parallel computation.  



 

 

64 

 

Spark and Hadoop are usually used together by several companies. Hadoop was 

primarily designed to house unstructured data and run batch processing operations 

on it. Spark is used extensively for its high speed in memory computing and ability to 

run advanced real-time analytics. The two together have been giving very good 

results.   

Hadoop Ecosystem Components for Data Analysis  

1. Pig: It is a high-level scripting language used with Hadoop. It serves as an 

alternative to MapReduce.  It has two parts:  

a) Pig Latin: It is SQL-like scripting language. Pig Latin scripts are translated 

into MapReduce jobs which can then run-on YARN and process data in the 

HDFS cluster. It was initially developed by Yahoo. It is immensely popular 

with developers who are not comfortable with MapReduce.  However, SQL 

developers may have a preference for Hive.  How it works? There is a “Load” 

command available to load the data from “HDFS” into Pig.  Then one can 

perform functions such as grouping, filtering, sorting, joining etc. The 

processed or computed data can then be either displayed on screen or 

placed back into HDFS.  It gives you a platform for building data flow for ETL 

(Extract, Transform and Load), processing and analyzing huge data sets.  

b) Pig runtime: It is the runtime environment.   

2. Hive: Hive is a data warehouse software project built on top of Hadoop. Three 

main tasks performed by Hive are summarization, querying and analysis. It 

supports queries written in a language called HQL or HiveQL which is a 

declarative SQL-like language. It converts the SQL-style queries into MapReduce 

jobs which are then executed on the Hadoop platform.   

Difference between Hive and RDBMS  

Both Hive and traditional databases such as MySQL, MS SQL Server, and PostgreSQL 

support SQL interfaces. However, while traditional databases are typically used as 



 

 

65 

 

transactional databases, Hive is better known as a data warehouse (D/W).  Hive and 

traditional databases differ in their approach to schema enforcement, usage patterns, 

suitability for OLTP and OLAP, data analysis capabilities, scalability, and computing 

paradigm: 

 Schema Enforcement: Hive enforces schema on read time, whereas traditional 

databases enforce it on write time. 

 Usage: Hive is designed for scenarios where data is written once and read many 

times, whereas traditional databases support frequent read and write operations. 

 OLTP and OLAP Suitability: Due to its batch-oriented nature, Hive is more 

suitable for OLAP, while traditional databases excel in OLTP with real-time 

operations. 

 Data Analysis: Hive is well-suited for static data analysis with slower query 

response times, while traditional databases are more adept at handling dynamic, 

real-time data. 

 Scalability and Cost: Hive can be scaled at a lower cost compared to traditional 

databases due to its use of HDFS. Traditional databases typically incur higher 

costs for storage and management. 

 Computing Paradigm: Hive leverages parallel computing, enhancing its 

performance and scalability, while traditional databases rely on serial computing, 

which can impact scalability in certain scenarios. 

The summary of their difference is given in Table 2.5.   

Table 2.5: Hive versus RDBMS 

Aspect Hadoop RDBMS 

Data Variety Used for structured, semi-

structured, and unstructured data. 

Supports a variety of data formats 

in real time such as XML, JSON, 

and text-based flat file formats. 

Used for structured data 



 

 

66 

 

Data Storage Usually datasets of size terabytes, 

petabytes 

Usually, datasets of size 

gigabytes 

Querying HiveQL SQL 

Query 

Response 

Latency due to batch processing Immediate query response time 

Schema Schema required on read Schema required on write 

Speed Writes are faster compared to 

reads as there is no adherence to 

schema required at the time of 

inserting or writing data. Schema is 

enforced at read time. 

Reads are very fast (supported 

by building indexes on required 

columns). Designed for read and 

write many times. 

Cost Apache Hadoop is open-source, 

large-scale, distributed, scalable, 

data-intensive computing. 

Available as proprietary RDBMS 

such as Oracle, MS SQL Server, 

IBM DB2, etc. Also open-source 

RDBMS are available such as 

MySQL, PostgreSQL, etc. 

Use Cases Analytics, data discovery OLTP (Online Transaction 

Processing). Mainly used to 

store and process day-to-day 

business data. 

Throughput High Low 

Scalability Horizontal (Hadoop scales by 

adding nodes to a Hadoop cluster 

of easily available commodity 

machines). 

Vertical (RDBMS scales 

vertically by increasing the 

horsepower (CPU, Hard Disk 

Capacity, RAM, etc.) of the 

machine). 

Hardware Commodity/Utility Hardware High-End Servers 

Integrity Low High. Obeys ACID properties:  A 

– Atomicity;  C – Consistency ; I 

– Isolation ; D – Durability 



 

 

67 

 

Difference between Hive and HBase   

1. Hive is a MapReduce-based SQL engine that runs on top of Hadoop. HBase is a 

key–value NoSQL database that runs on top of HDFS.   

2. Hive is for batch processing of big data. HBase is for real-time data streaming.  

Impala: It is a high-performance SQL engine that runs on Hadoop cluster. It is ideal for 

interactive analysis. It has very low latency measured in milliseconds. It supports a 

dialect of SQL called Impala SQL.   

ZooKeeper: It is a coordination service for distributed applications.  

Oozie: It is a workflow scheduler system to manage Apache Hadoop jobs. 

Mahout : It is a scalable machine learning and data mining library.  

Chukwa : It is a data collection system for managing large distributed systems.   

Ambari : It is a web-based tool for provisioning, managing, and monitoring Apache 

Hadoop clusters.  

2.2.5 Hadoop Distributions  

Hadoop is an open-source Apache project. Anyone can freely download the core 

aspects of Hadoop. The core aspects of Hadoop include the following:  

1. Hadoop Common   

2. Hadoop Distributed File System (HDFS)   

3. Hadoop YARN (Yet Another Resource Negotiator) 

4. Hadoop MapReduce   

There are few companies such as IBM, Amazon Web Services, Microsoft, Teradata, 

Hortonworks, Cloudera, etc. that have packaged Hadoop into a more easily consumable 

distributions or services. Although each of  these companies have a slightly different 

strategy, the key essence remains its ability to distribute data and  workloads across 



 

 

68 

 

potentially thousands of servers thus making big data manageable data. A few Hadoop 

distributions are given in Figure 2.13.  

 

 

 

Figure 2.13: Hadoop Distribution 

2.2.6 Hadoop versus SQL  

Table 2.6 lists the differences between Hadoop and SQL.  

Table 2.6 Hadoop versus SQL 

Hadoop SQL 

Scale out Scale up 

Key–Value pairs Relational table 

Functional Programming Declarative Queries 

Offline batch processing Online transaction processing 



 

 

69 

 

2.2.7 Integrated Hadoop Systems Offered by Leading Market Vendors   

Refer Figure 2.14 to get a glimpse of the leading market vendors offering integrated 

Hadoop systems.  

 

Figure 2.14: Integrated Hadoop systems. 

2.2.8 Cloud-Based Hadoop Solutions   

Amazon Web Services holds out a comprehensive, end-to-end portfolio of cloud 

computing services to help manage big data. The aim is to achieve this and more along 

with retaining the emphasis on reducing costs, scaling to meet demand, and 

accelerating the speed of innovation.  The Google Cloud Storage connector for Hadoop 

empowers one to perform MapReduce jobs directly on data in Google Cloud Storage, 

without the need to copy it to local disk and running it in the Hadoop Distributed File 

System (HDFS). The connector simplifies Hadoop deployment, and at the same time 

reduces cost and provides performance comparable to HDFS, all this while increasing 

reliability by eliminating the single point of failure of the name node. Refer Figure 2.15.  

 

Figure 2.15:Cloud-based solutions 



 

 

70 

 

2.3 Introducing Hadoop  

Today, Big Data seems to be the buzz word! Enterprises, the world over, are beginning 

to realize that there is a huge volume of untapped information before them in the form of 

structured, semi-structured, and unstructured data. This varied variety of data is spread 

across the networks. 

 Let us look at few statistics to get an idea of the amount of data which gets generated 

every day, every minute, and every second.  

1. Every day:  

a) NYSE (New York Stock Exchange) generates 1.5 billion shares and trade data. 

b) Facebook stores 2.7 billion comments and likes. 

c) Google processes about 24 petabytes of data.  

2. Every minute: 

a) Facebook users share nearly 2.5 million pieces of content.  

b) Twitter users tweet nearly 300,000 times. 

c) Instagram users post nearly 220,000 new photos.  

d) YouTube users upload 72 hours of new video content.  

e) Apple users download nearly 50,000 apps. 

f) Email users send over 200 million messages. 

g) Amazon generates over $80,000 in online sales.  

h) Google receives over 4 million search queries.  

3.  Every second:  

a) Banking applications process more than 10,000 credit card transactions.  

2.3.1 Data: The Treasure Trove  



 

 

71 

 

1. Provides business advantages such as generating product recommendations, 

inventing new products, analyzing the market, and many, many more… 

2. Provides few early key indicators that can turn the fortune of business.   

3. Provides room for precise analysis. If we have more data for analysis, then we 

have greater precision of analysis.   

To process, analyze, and make sense of these different kinds of data, we need a 

system that scales and addresses the challenges shown in Figure 2.16 

 

 

Figure 2.16: Challenges with big volume, variety, and velocity of data.  

2.3.2 Why Hadoop?  

Hadoop can handle large volumes of data, as well as diverse categories of data, quickly 

and efficiently. Hadoop's popularity stems from several key factors (Refer Figure 2.17): 

1. Handling Massive Data: Hadoop efficiently manages huge volumes and 

different types of data, ensuring quick processing. 

2. Low Cost: Being open-source and utilizing commodity hardware makes Hadoop 

a cost-effective solution for storing vast amounts of data. 



 

 

72 

 

3. Computing Power: Hadoop's distributed computing model enables it to process 

large data volumes swiftly, with more computing nodes translating to increased 

processing power. 

4. Scalability: It's easy to scale Hadoop by simply adding nodes as needed, 

requiring minimal administration effort. 

5. Storage Flexibility: Unlike traditional databases, Hadoop allows storing data 

without prior processing. It offers the freedom to store any amount of data and 

decide later how to utilize it, including unstructured data like images, videos, and 

text. 

6. Inherent Data Protection: Hadoop safeguards data and applications against 

hardware failures. It automatically redistributes tasks from failed nodes to 

functional ones and stores multiple copies of data across the cluster to prevent 

loss. 

 

Figure 2.17 Key considerations of Hadoop.  

Hadoop makes use of commodity hardware, distributed file system, and 

distributed computing as shown in Figure 2.18. In this new design, groups of 

machines are gathered together; it is known as a Cluster.  



 

 

73 

 

 

Figure 2.18: Hadoop framework (distributed file system, commodity 

hardware).  

With this new paradigm, the data can be managed with Hadoop as follows:  

1. Distributes the data and duplicates chunks of each data file across several 

nodes, for example, 25–30 is one chunk of data as shown in Figure 2.18.  

2. Locally available compute resource is used to process each chunk of data in 

parallel.  

3. Hadoop Framework handles failover smartly and automatically.   

2.3.3 Why NOT RDBMS?  

RDBMS is not suitable for storing and processing large files, images, and videos. 

RDBMS is not a good choice when it comes to advanced analytics involving machine 

learning. Figure 2.19 describes the RDBMS system with respect to cost and storage. It 

calls for huge investment as the volume of data shows an upward trend.  



 

 

74 

 

 

Figure 2.19 RDBMS with respect to cost/GB of storage. 

2.3.4 RDBMS versus Hadoop  

Table 2.7 describes the difference between RDBMS and Hadoop.  

Table 2.7 RDBMS versus Hadoop 

PARAMETERS RDBMS HADOOP 

System Relational Database 

Management System 

Node Based Flat Structure 

Data Suitable for structured 

data 

Suitable for structured, unstructured data. 

Supports a variety of data formats in real 

time such as XML, JSON, text-based flat 

file formats, etc. 

Processing OLTP Analytical, Big Data Processing 

Choice When the data needs a 

consistent relationship 

Big Data processing, which does not 

require any consistent relationships 

between data. 

Processor Needs expensive 

hardware or high-end 

processors to store huge 

volumes of data. 

In a Hadoop Cluster, a node requires 

only a processor, a network card, and a 

few hard drives. 

Cost Cost around $10,000 to Cost around $4,000 per terabyte of 



 

 

75 

 

$14,000 per terabyte of 

storage. 

storage. 

2.3.5 Distributed Computing Challenges 

 This section is focusing on two major challenges in distributed computing. 

2.3.5.1 Hardware Failure  

 Distributed systems face frequent hardware failures due to the interconnected 

nature of servers. 

 Hadoop addresses this challenge with Replication Factor (RF), ensuring data 

redundancy across the network. 

 RF indicates the number of data copies stored for each data item or block, 

reducing the risk of data loss. (Refer to figure 2.20) 

2.3.5.2 How to Process This Gigantic Store of Data?  

 Data in distributed systems is distributed across multiple machines, posing a 

challenge for integration and processing. 

 Hadoop employs MapReduce Programming to address this challenge effectively. 

 MapReduce breaks down data processing tasks into smaller units, distributes 

them across the cluster, and consolidates the results. 

 

Figure 2.20 Replication factor 

 

 



 

 

76 

 

2.4 History of Hadoop   

Hadoop was created by Doug Cutting, the creator of Apache Lucene (a commonly used 

text search library).  Hadoop is a part of the Apache Nutch (Yahoo) project (an open-

source web search engine) and also a part of the Lucene project. Refer Figure 5.6 for 

more details.  

2.4.1 The Name “Hadoop”   

The name Hadoop is not an acronym; it’s a made-up name. The project creator, Doug 

Cutting, explains how the name came about: “The name my kid gave a stuffed yellow 

elephant. Short, relatively easy to spell and pronounce, meaningless, and not used 

elsewhere: those are my naming criteria. Kids are good at generating such.  Googol is a 

kid’s term”.  

 

Figure 2.21 Hadoop history.   

Subprojects and “contrib” modules in Hadoop also tend to have names that are 

unrelated to their function, often with an elephant or other animal theme (“Pig”, for 

example).   

2.4.2 Hadoop Overview  

 Open-source software framework to store and process massive amounts of data in a 

distributed fashion on large clusters of commodity hardware. Basically, Hadoop 

accomplishes two tasks:  

1. Massive data storage. 



 

 

77 

 

2. Faster data processing.  

2.4.3 Key Aspects of Hadoop  

Figure 2.22 describes the key aspects of Hadoop.  

 

Figure 2.22 Key aspects of Hadoop.  

2.4.4 Hadoop Components   

Figure 2.23 depicts the Hadoop components.  

 

Figure 2.23 Hadoop components.  



 

 

78 

 

Hadoop Core Components  

1. HDFS:   

a) Storage component.   

b) Distributes data across several nodes.   

c) Natively redundant.  

2.  MapReduce:   

a) Computational framework.   

b) Splits a task across multiple nodes.  

c) Processes data in parallel.   

Hadoop Ecosystem: Hadoop Ecosystem are support projects to enhance the 

functionality of Hadoop Core Components. The Eco Projects are as follows:   

1. HIVE   

2. PIG   

3. SQOOP   

4. HBASE   

5. FLUME   

6. OOZIE   

7. MAHOUT   

2.4.5 Hadoop Conceptual Layer   

It is conceptually divided into Data Storage Layer which stores huge volumes of data 

and Data Processing Layer which processes data in parallel to extract richer and 

meaningful insights from data (Refer Figure 2.24).   

2.4.6 High-Level Architecture of Hadoop   



 

 

79 

 

Hadoop is a distributed Master-Slave Architecture. Master node is known as 

NameNode and slave nodes are known as DataNodes. Figure 2.25 depicts the 

Master–Slave Architecture of Hadoop Framework.   

 

Figure 2.24 Hadoop conceptual layer.  

 

Figure 2.25 Hadoop high-level architecture. (Reference: Hadoop in Practice, Alex 

Holmes) 

Key components of the Master Node: 

1. Master HDFS: Its main responsibility is partitioning the data storage across the 

slave nodes. It also  keeps track of locations of data on DataNodes.   

2. Master MapReduce: It decides and schedules computation task on slave nodes.  



 

 

80 

 

2.5 Use Case of Hadoop : ClickStream Data   

ClickStream data (mouseclicks) helps you to understand the purchasing behavior of 

customers. ClickStream analysis helps online marketers optimize their product web 

pages, promotional content, etc. to improve their business.  

 

Figure 2.26 ClickStream data analysis.  

The ClickStream analysis (Figure 2.26) using Hadoop provides three key benefits: 

1. Hadoop helps to join ClickStream data with other data sources such as 

Customer Relationship Management Data (Customer Demographics Data, 

Sales Data, and Information on Advertising  Campaigns). This additional data 

often provides the much needed information to understand customer 

behavior.   

2. Hadoop’s scalability property helps you to store years of data without ample 

incremental cost. This helps you to perform temporal or year over year 

analysis on ClickStream data which your competitors  may miss.   

3. Business analysts can use Apache Pig or Apache Hive for website analysis. 

With these tools, you can organize ClickStream data by user session, refine 

it, and feed it to visualization or analytics tools. 

(Reference:http://hortonworks.com/wp-

content/uploads/2014/05/Hortonworks.BusinessValueofHadoop.  v1.0.pdf ) 

2.6 Hadoop Distributors  

The companies shown in Figure 2.27 provide products that include Apache Hadoop, 

commercial support, and/or tools and utilities related to Hadoop.  



 

 

81 

 

 

Figure 2.27 Common Hadoop distributors.  

2.7 HDFS (Hadoop Distributed File System)  

Some key Points of Hadoop Distributed File System are as follows:   

1. Storage component of Hadoop.   

2. Distributed File System.   

3. Modeled after Google File System.   

4. Optimized for high throughput (HDFS leverages large block size and moves 

computation where data is stored).   

5. You can replicate a file for a configured number of times, which is tolerant in 

terms of both software and hardware.   

6. Re-replicates data blocks automatically on nodes that have failed.  

7. You can realize the power of HDFS when you perform read or write on large files 

(gigabytes and larger).  

8. Sits on top of native file system such as ext3 and ext4, which is described in 

Figure 2.28.   

Figure 2.29 describes important key points of HDFS. Figure 2.30 describes Hadoop 

Distributed File System Architecture. Client Application interacts with NameNode for 

metadata related activities and communicates with DataNodes to read and write files. 

DataNodes converse with each other for pipeline reads and writes.   

Let us assume that the file “Sample.txt” is of size 192 MB. As per the default data block 

size(64 MB), it will  be split into three blocks and replicated across the nodes on the 

cluster based on the default replication factor.  

 



 

 

82 

 

2.7.1 HDFS Daemons   

2.7.1.1 NameNode   

HDFS breaks a large file into smaller pieces called blocks. NameNode uses a rack ID to 

identify DataNodes  in the rack. A rack is a collection of DataNodes within the cluster. 

NameNode keeps tracks of blocks of a file as it is placed on various DataNodes. 

NameNode manages file-related operations such as read, write, create,  and delete. Its 

main job is managing the File System Namespace. A file system namespace is 

collection of files in the cluster. NameNode stores HDFS namespace. File system 

namespace includes mapping of blocks to file, file properties and is stored in a file 

called FsImage. NameNode uses an EditLog (transaction log) to record every 

transaction that happens to the filesystem metadata. Refer Figure 2.31. When 

NameNodestarts  up, it reads FsImage and EditLog from disk and applies all 

transactions from the EditLog to in-memory  representation of the FsImage. Then it 

flushes out new version of FsImage on disk and truncates the old  EditLog because the 

changes are updated in the FsImage. There is a single NameNode per cluster.  

(Reference: http://hadoop.apache.org/docs/r1.0.4/hdfs_design.html  ) 

 

Figure 2.28 Hadoop Distributed File System. 

 

Figure 2.29 Hadoop Distributed File System – key points.  



 

 

83 

 

 

Figure 2.30 Hadoop Distributed File System Architecture. 

Reference: Hadoop in Practice, Alex Holmes 

 

 

 

Figure 2.31 NameNode.  

 

2.7.1.2 DataNode   

There are multiple DataNodes per cluster. During Pipeline read and write DataNodes 

communicate with  each other. A DataNode also continuously sends “heartbeat” 

message to NameNode to ensure the connectivity between the NameNode and 

DataNode. In case there is no heartbeat from a DataNode, the NameNode replicates 

that DataNode within the cluster and keeps on running as if nothing had happened.  Let 

us explain the concept behind sending the heartbeat report by the DataNodes to the 



 

 

84 

 

NameNode.  (Reference: Wrox Certified Big Data Developer. ) Communications of 

name node and data node Refer figure 2.32. 

 

 

Figure 2.32 NameNode and DataNode Communication.  

2.7.1.3 Secondary NameNode   

The Secondary NameNode takes a snapshot of HDFS metadata at intervals specified in 

the Hadoop configuration. Since the memory requirements of Secondary NameNode 

are the same as NameNode, it is better to run NameNode and Secondary NameNode 

on different machines. In case of failure of the NameNode, the Secondary NameNode 

can be configured manually to bring up the cluster. However, the Secondary NameNode 

does not record any real-time changes that happen to the HDFS metadata.  

2.8 Anatomy of File Read   

Figure 2.33 describes the anatomy of File Read. The steps involved in reading a file in 

Hadoop's DistributedFileSystem (HDFS): 

1. Open File: The client opens the file it wants to read by calling open() on 

DistributedFileSystem. 

2. Get Data Block Locations: DistributedFileSystem communicates with the 

NameNode to get the locations of data blocks, which are stored on DataNodes. 



 

 

85 

 

3. Create InputStream: The client receives an FSDataInputStream to read from 

the file. 

4. Read Data: The client reads data from the DFSInputStream by calling read(). It 

connects to the closest DataNode for the first block of the file. 

5. Streaming Data: The client continues reading data by repeatedly calling read() 

until the end of the block is reached. Once done, it closes the connection with the 

DataNode and repeats the process for subsequent blocks. 

6. Close Connection: After reading the entire file, the client calls close() on 

FSDataInputStream to close the connection. 

 

Figure 2.33 File Read. 

2.8.1 Anatomy of File Write   

Figure 2.34 describes the anatomy of File Write. The steps involved in writing a file in 

Hadoop's DistributedFileSystem(HDFS): 

1. Create File: The client creates a file by calling create() on DistributedFileSystem. 

2. Request to NameNode: An RPC call is made to the NameNode through 

DistributedFileSystem to create a new file. The NameNode performs checks and 



 

 

86 

 

creates the file without data blocks initially. The client receives an 

FSDataOutputStream for writing. 

3. Write Data: As the client writes data, it's split into packets by DFSOutputStream 

and added to a data queue. DataStreamer consumes this queue and requests 

the NameNode to allocate new blocks by selecting suitable DataNodes, forming 

a pipeline. 

4. Stream Data: DataStreamer streams packets to the first DataNode in the 

pipeline. Each DataNode stores and forwards the packet to the next. This 

process continues until all replicas are stored. 

5. Acknowledge Queue: DFSOutputStream manages an "Ack queue" of packets 

awaiting acknowledgment from DataNodes. A packet is removed from this queue 

only after acknowledgment from all DataNodes in the pipeline. 

6. Close Stream: After writing the file, the client calls close() on the stream. 

7. Finalize Write: Remaining packets are flushed to the DataNode pipeline, and 

acknowledgments are awaited. Once all acknowledgments are received, the 

client informs the NameNode that the file creation is complete. 

 

Figure 2.34 File Write.  

2.8.2 Replica Placement Strategy   

2.8.2.1 Hadoop Default Replica Placement Strategy  



 

 

87 

 

As per the Hadoop Replica Placement Strategy, first replica is placed on the same node 

as the client. Then it places second replica on a node that is present on different rack. It 

places the third replica on the same rack as second, but on a different node in the rack. 

Once replica locations have been set, a pipeline is built. This strategy provides good 

reliability. Figure 2.35 describes the typical replica pipeline.  (Reference: Hadoop, the 

Definite Guide, 3rd Edition, O’Reilly Publication).   

2.9 Working with HDFS Commands   

Objective: To get the list of directories and files at the root of HDFS.  

Act:  hadoop fs -ls/  

 

Figure 2.35 Replica Placement Strategy.  

Objective: To get the list of complete directories and files of HDFS.   

Act:  hadoop fs -ls -R/   

 

Objective: To create a directory (say, sample) in HDFS.   

Act:  hadoop fs -mkdir /sample   

 

Objective: To copy a file from local file system to HDFS.   

Act:  hadoop fs -put /root/sample/test.txt /sample/test.txt   

 

Objective: To copy a file from HDFS to local file system.   

Act:  hadoop fs -get /sample/test.txt /root/sample/testsample.txt   



 

 

88 

 

 

Objective: To copy a file from local file system to HDFS via copyFromLocal command.  

Act:  hadoop fs -copyFromLocal /root/sample/test.txt /sample/testsample.txt   

 

Objective: To copy a file from Hadoop file system to local file system via copyToLocal 

command.   

Act:  hadoop fs -copyToLocal /sample/test.txt /root/sample/testsample1.txt   

 

Objective: To display the contents of an HDFS file on console.   

Act: hadoop fs -cat /sample/test.txt 

  

Objective: To copy a file from one directory to another on HDFS.   

Act:  hadoop fs -cp /sample/test.txt /sample1   

 

Objective: To remove a directory from HDFS.   

Act:  hadoop fs-rm-r /sample1  

2.9.1 Special Features of HDFS   

1. Data Replication: There is absolutely no need for a client application to track all 

blocks. It directs the client to the nearest replica to ensure high performance.   

2. Data Pipeline: A client application writes a block to the first DataNode in the 

pipeline. Then this DataNode takes over and forwards the data to the next node 

in the pipeline. This process continues for all the data blocks, and subsequently 

all the replicas are written to the disk.   

Reference: Wrox Certified Big Data Developer.  

2.10 Processing Data with Hadoop   

MapReduce Programming is a software framework. MapReduce Programming is a 

framework used to process large amounts of data in parallel. Here's how it works: 



 

 

89 

 

1. Input Splitting: The input data is divided into independent chunks, and map 

tasks process these chunks in parallel. 

2. Mapping: Each map task processes its chunk of data and produces intermediate 

results, which are stored locally on the server. 

3. Shuffling and Sorting: The framework automatically shuffles and sorts the 

intermediate data based on keys. 

4. Reducing: Reduce tasks combine the intermediate data from multiple maps to 

produce the final output. 

5. Data Locality: Hadoop's Distributed File System and MapReduce Framework 

run on the same nodes, allowing tasks to be scheduled where the data resides, 

resulting in high throughput. 

6. JobTracker and TaskTracker: MapReduce has two daemons - JobTracker 

(master) and TaskTracker (slave). JobTracker schedules tasks to TaskTrackers, 

monitors task execution, and re-executes failed tasks. 

7. Job Submission: MapReduce applications are implemented via suitable 

interfaces, and job parameters are configured. The job client submits the job to 

the JobTracker, which schedules tasks to slaves and monitors their execution. 

MapReduce programming phases and daemons Refer figure 2.36.  

 

Figure 2.36 MapReduce Programming phases and daemons. 

Reference: http://hadoop.apache.org/docs/r1.0.4/mapred_tutorial.html  

2.10.1 MapReduce Daemons  

In MapReduce, there are two key daemons: 



 

 

90 

 

1. JobTracker: 

o The JobTracker is the master daemon responsible for managing and 

coordinating MapReduce jobs in the cluster. 

o It schedules tasks to TaskTrackers, monitors their execution, and handles 

task failures by re-executing them as necessary. 

o JobTracker ensures efficient utilization of cluster resources and maintains 

overall job execution status. 

2. TaskTracker: 

o TaskTracker is a slave daemon running on each cluster node. 

o It executes map and reduce tasks assigned by the JobTracker. 

o TaskTracker communicates with the JobTracker to report task status and 

request new tasks. 

o It manages task execution, including task initialization, progress 

monitoring, and cleanup upon task completion or failure. 

These daemons work together to efficiently process data using the MapReduce 

framework in a distributed Hadoop cluster. 

Lets sum up 

The Hadoop Ecosystem offers a robust framework for handling large-scale data 

processing and analysis, distinctly differing from traditional RDBMS by emphasizing 

distributed computing across clusters of commodity hardware. Key challenges in 

distributed computing, such as fault tolerance and data distribution, are adeptly 

managed by Hadoop's architecture. Central to this is the Hadoop Distributed File 

System (HDFS), which provides high-throughput access to data and fault tolerance. 

Data processing is efficiently handled using Hadoop's MapReduce paradigm, while 

resource management and application coordination are streamlined through Hadoop 

YARN. The ecosystem's interaction extends to a suite of tools and technologies that 

integrate seamlessly, enhancing its versatility and functionality for big data applications. 



 

 

91 

 

UNIT 2 : SUMMARY 

 NoSQL 

o Nonrelational databases designed for large volumes of unstructured and 

semi-structured data. 

o Offers flexibility, scalability, and high performance. 

o Types: Document stores (e.g., MongoDB), key-value stores (e.g., Redis), 

column-family stores (e.g., Cassandra), and graph databases (e.g., 

Neo4j). 

 Comparison of SQL and NoSQL 

o SQL Databases: Use structured schema and ACID properties for 

consistency. 

o NoSQL Databases: Provide schemaless design, BASE properties, and 

horizontal scalability. 

o ACID: Atomicity, Consistency, Isolation, Durability. 

o BASE: Basically Available, Soft state, Eventual consistency. 

 Hadoop 

o An open-source framework for distributed storage and processing of big 

data. 

o Utilizes the MapReduce programming model. 

o Key components: Hadoop Distributed File System (HDFS) and 

MapReduce. 

 RDBMS vs. Hadoop 

o RDBMS: Suited for structured data with ACID compliance. 

o Hadoop: Handles vast amounts of varied data with a distributed approach 

and eventual consistency. 

o RDBMS is typically used for OLTP (Online Transaction Processing), 

whereas Hadoop is used for OLAP (Online Analytical Processing). 

 Distributed Computing Challenges 

o Issues include data distribution, fault tolerance, resource management, 

and efficient processing across distributed systems. 



 

 

92 

 

o Network latency and bandwidth constraints. 

o Data consistency and synchronization across nodes. 

 Hadoop Overview 

o Consists of modules for storing and processing large datasets, primarily 

using HDFS and MapReduce. 

o Hadoop ecosystem includes projects like Hive, Pig, HBase, and Spark for 

various big data tasks. 

 Hadoop Distributed File System (HDFS) 

o A scalable, fault-tolerant storage system that splits data into blocks 

distributed across multiple nodes. 

o Replication of data blocks to ensure fault tolerance. 

 Processing Data with Hadoop 

o Utilizes MapReduce for parallel processing, breaking tasks into smaller 

subtasks processed across the cluster. 

o JobTracker and TaskTracker manage and monitor tasks and resource 

allocation. 

 Managing Resources and Applications with Hadoop YARN 

o YARN (Yet Another Resource Negotiator) manages resources and 

schedules jobs. 

o Improves cluster utilization and scalability. 

o Separates resource management and job scheduling/monitoring functions. 

 Interacting with the Hadoop Ecosystem 

o Tools and frameworks like Hive, Pig, HBase, and Spark are used to 

perform data analytics, processing, and storage tasks within the Hadoop 

environment. 

o Hive: Data warehouse infrastructure built on Hadoop. 

o Pig: Platform for analyzing large data sets with a high-level scripting 

language. 

o HBase: Distributed, scalable, big data store. 

o Spark: Fast, in-memory data processing engine. 

 Query Processing and Optimization 



 

 

93 

 

o Efficient query processing techniques. 

o Query optimization strategies to enhance performance in a distributed 

environment. 

 Data Integration 

o Techniques for integrating data from various sources. 

o Ensuring data quality and consistency during integration. 

 Security and Privacy 

o Implementing security measures for data protection. 

o Ensuring compliance with data privacy regulations. 

 Scalability and Performance 

o Techniques to scale systems horizontally. 

o Performance tuning and optimization practices for big data systems. 

 Future Trends 

o Emerging technologies and trends in big data and distributed computing. 

o The role of AI and machine learning in enhancing big data analytics. 

 



 

 

94 

 

Glossary 

 NoSQL: Databases designed for handling unstructured data (e.g., MongoDB, 

Cassandra). 

 SQL: Structured Query Language, used for managing and manipulating 

relational databases. 

 ACID Properties: Atomicity, Consistency, Isolation, Durability. 

 BASE Properties: Basically Available, Soft state, Eventual consistency. 

 HDFS: Hadoop Distributed File System, a scalable, fault-tolerant storage system. 

 MapReduce: Programming model for processing and generating large datasets 

with a parallel, distributed algorithm on a cluster. 

 YARN: Yet Another Resource Negotiator, manages resources and schedules 

jobs in Hadoop. 

 Hive: Data warehouse infrastructure built on top of Hadoop for providing data 

summarization, query, and analysis. 

 Pig: High-level platform for creating programs that run on Hadoop.



 

 

95 

 

Checkup Your Progress 

EXERCISE 1: Fill in each gap with the right word from the list 

1. NoSQL databases are designed to handle large volumes of data with diverse 
_______________ requirements. (structured, consistency, rapid) 

2. SQL databases are typically used for applications requiring strong 
_______________ and structured data, whereas NoSQL databases excel in 
scenarios requiring flexibility and scalability. (consistency, schema, performance) 

3. Hadoop is an open-source framework designed for distributed storage and 
_______________ of large datasets across clusters of computers. (processing, 
analysis, security) 

4. The Hadoop Distributed File System (HDFS) is designed to store data reliably 
even on _______________ hardware and provide high throughput access to 
data. (commodity, enterprise, cloud) 

5. Hadoop YARN (Yet Another Resource Negotiator) is responsible for managing 
resources and scheduling tasks on a Hadoop _______________ to optimize 
performance. (cluster, node, server) 

 

EXERCISE 2: Read the questions below and circle if the answer is True 

 

1. NoSQL databases are primarily designed for handling structured data with rigid 

schemas. 

2. Hadoop is a distributed computing framework designed for processing and 

analyzing large datasets across clusters of computers. 

3. Hadoop Distributed File System (HDFS) ensures high availability and fault 

tolerance by replicating data across multiple nodes in a cluster. 

4. Hadoop YARN (Yet Another Resource Negotiator) is responsible for managing 

resources and scheduling tasks in a Hadoop cluster to optimize performance. 

5. SQL databases and NoSQL databases serve similar purposes and can be used 

interchangeably in all types of applications. 

 



 

 

96 

 

EXERCISE 3: Choose the correct answer 

1. NoSQL databases are designed primarily for: 

a) Handling structured data with rigid schemas 

b) Rapid development and scalability of unstructured data 

c) Ensuring transactional consistency 

2. Hadoop is best described as: 

a) A relational database management system (RDBMS) for structured data 

b) A distributed computing framework for processing large datasets 

c) A real-time data processing tool 

3. Hadoop Distributed File System (HDFS) ensures fault tolerance by: 

a) Storing data in a single location for quick access 

b) Replicating data across multiple nodes in a cluster 

c) Encrypting data to prevent unauthorized access 

4. Hadoop YARN (Yet Another Resource Negotiator) is responsible for: 

a) Managing data storage in HDFS 

b) Processing complex SQL queries 

c) Managing resources and scheduling tasks in a Hadoop cluster 

5. SQL databases are typically preferred for applications that require: 

a) Flexible schema and scalability 



 

 

97 

 

b) Strong consistency and structured data 

c) Real-time data processing 

EXERCISE 4: Match the following  

 

1. NoSQL 

databases 

-  A. Designed for handling large volumes of unstructured data 

2. Hadoop 

Distributed File 

System (HDFS) 

- B. Responsible for managing resources and scheduling tasks 

in a Hadoop cluster 

 

3. Hadoop YARN 

(Yet Another 

Resource 

Negotiator) 

- C. Ensures fault tolerance by replicating data across multiple 

nodes 

 

4. Distributed 

computing 

- D. Primarily used for structured data with strong consistency 

requirements 

5. SQL databases - E. Framework for processing large datasets across clusters of 

computers 

 

EXERCISE 5: Self-Assessment Questions  

 

1. What is one key difference between SQL and NoSQL databases in terms of data 
schema flexibility? 

2. What is the primary purpose of the Hadoop Distributed File System (HDFS)? 

3. Name one major challenge faced in distributed computing that Hadoop aims to 
address. 

4. Briefly explain what a MapReduce job in Hadoop entails. 

5. What is the role of YARN in the Hadoop ecosystem? 



 

 

98 

 

Answers for Checkup Your Progress 

EXERCISE 1:  

1. Consistency 2. Consistency 3. Processing 4. Commodity 5. cluster 

EXERCISE 2: 

1. False 2. True 3. True 4. True 5. False 

EXERCISE 3: 

1. b) 2. b) 3. b) 4. c) 5. b)  

EXERCISE 4: 

1.A, 2.C, 3.B, 4.E, 5.D. 

Open Source E-content Links: 

1. https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-

site/YARN.html 

2. https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-

hdfs/HdfsDesign.html 

3. https://hadoop.apache.org/docs/current/ 

4. https://www.mongodb.com/resources/basics/databases/nosql-explained 

 

References: 

1. NoSQL Databases Overview. (2023). Retrieved June 28, 2024, from 

https://www.mongodb.com/nosql-explained 

2. SQL vs NoSQL Databases: What's the Difference? (2023). Retrieved June 28, 

2024, from https://www.mongodb.com/sql-vs-nosql 



 

 

99 

 

3. Apache Hadoop. (2023). Retrieved June 28, 2024, from 

https://hadoop.apache.org/ 

4. Hadoop Distributed File System (HDFS) Architecture Guide. (2023). Retrieved 

June 28, 2024, from https://hadoop.apache.org/docs/current/hadoop-project-

dist/hadoop-hdfs/HdfsDesign.html 

5. Apache YARN Documentation. (2023). Retrieved June 28, 2024, from 

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-

site/YARN.html 

 

 



 

 

100 

 

UNIT-III MONGODB AND MAP REDUCE 

PROGRAMMING 

UNIT III: OBJECTIVE 

This unit objective is to provide a comprehensive understanding of MongoDB and 

MapReduce programming. In MongoDB, students will compare terms used in relational 

databases with MongoDB, explore various data types supported by MongoDB, and 

learn the MongoDB Query Language (MQL) for querying databases efficiently. On the 

other hand, in MapReduce programming, students will delve into essential components 

such as Mapper, Reducer, Combiner, and Partitioner, understanding their roles in 

processing and aggregating data. Additionally, students will learn about searching, 

sorting, and compression techniques in MapReduce, enabling efficient data analysis 

and processing 

Unit Summary 

1. MongoDB 

o Introduction to MongoDB 

o Comparison of Terms used in RDBMS and MongoDB 

o Data Types in MongoDB 

o MongoDB Query Language 

2. MapReduce Programming 

o Introduction to MapReduce 

o Components of MapReduce: Mapper, Reducer, Combiner, Partitioner 

Techniques for Searching, Sorting, and Compression 

3.1 What is MongoDB?  

 MongoDB is   

1.Cross-platform.  



 

 

101 

 

2. Open source.   

3. Non-relational.   

4. Distributed.   

5. No.   

6. Document-oriented data store.   

3.2 Why MongoDB?   

Few of the major challenges with traditional RDBMS are dealing with large volumes of 

data, rich variety of data – particularly unstructured data, and meeting up to the scale 

needs of enterprise data. The need is for a database that can scale out or scale 

horizontally to meet the scale requirements, has flexibility with respect to schema, is 

fault tolerant, is consistent and partition tolerant, and can be easily distributed over a 

multitude of nodes in a cluster. Refer Figure 3.1.   

3.2.1 Using Script Object Notation (JSON)   

JSON is extremely expressive. MongoDB actually does not use JSON but BSON 

(pronounced Bee Son) − it is Binary JSON. It is an open standard. It is used to store 

complex data structures.  MongoDB Document oriented  

 

 

 

Figure 3.1 Why MongoDB? 

 

 



 

 

102 

 

3.2.2 Creating or Generating a Unique Key   

Each JSON document should have a unique identifier. It is the _id key. It is similar to 

the primary key in relational databases. This facilitates search for documents based on 

the unique identifier. An index is automatically built on the unique identifier. The user 

has the option to either provide unique values themselves or allow the Mongo shell to 

generate them. 

 

0 1 2 3 4 5 6 7 8 9 10 11 

Timestamp Machine ID Process ID Counter 

 

3.2.2.1 Database   

It is a collection of collections. In other words, it is like a container for collections. It gets 

created the first time that your collection makes a reference to it. This can also be 

created on demand. Each database gets its own set of files on the file system. A single 

MongoDB server can house several databases.   

3.2.2.2 Collection   

A collection is analogous to a table of RDBMS. A collection is created on demand. It 

gets created the first time that you attempt to save a document that references it. A 

collection exists within a single database.  A collection holds several MongoDB 

documents. A collection does not enforce a schema. This implies that documents within 

a collection can have different fields. Even if the documents within a collection have 

same fields, the order of the fields can be different.   

3.2.2.3 Document   

A document is analogous to a row/record/tuple in an RDBMS table. A document has a 

dynamic schema.  This implies that a document in a collection need not necessarily 

have the same set of fields/key–value pairs.  Shown in Figure 3.2 is a collection by the 

name “students” containing three documents.   

3.2.3 Support for Dynamic Queries   

MongoDB has extensive support for dynamic queries. This is in keeping with traditional 

RDBMS wherein we have static data and dynamic queries. CouchDB, another 

document-oriented, schema-less No database and MongoDB’s biggest competitor, 



 

 

103 

 

works on quite the reverse philosophy. It has support for dynamic data and static 

queries.   

 

Figure 3.2 A Collection “students” containing 3 documents. 

3.2.4 Storing Binary Data  

 MongoDB offers GridFS to handle binary data storage, capable of storing files up to 4 

MB in size, suitable for small images or audio clips like profile pictures. For larger files 

such as movie clips, MongoDB uses a different approach. It stores metadata, or 

information about the data, in a collection named "file" and breaks down the actual data 

into smaller chunks stored in the "chunks" collection. This method ensures easy 

scalability, allowing MongoDB to efficiently manage large files by distributing them 

across multiple smaller pieces. 

3.2.5 Replication   

Why replication? Replication is essential in databases like MongoDB for several 

reasons. Firstly, it provides data redundancy and high availability, ensuring that copies 

of data are stored across multiple servers. This redundancy helps in recovering from 

hardware failures and service interruptions, as there are alternative copies of the data 

available. In MongoDB's replica set architecture, there is a single primary server 

responsible for handling write requests from clients. The primary logs all write 

operations into its Oplog (operations log), which is then used by secondary replica 

members to synchronize their data. This ensures strict adherence to consistency across 

the replica set. While clients typically read from the primary server for up-to-date data, 

they can also specify a read preference to direct read operations to secondary servers if 

needed, providing flexibility in accessing data. (Refer Figure 3.3) 



 

 

104 

 

 

Figure 3.3 Replication Process in MongoDB 

3.2.6 Sharding   

Sharding is akin to horizontal scaling. It means that the large dataset is divided and 

distributed over multiple servers or shards. Each shard is an independent database and 

collectively they would constitute a logical database.   

 

Figure 3.4 Sharding Process in MongoDB 

The prime advantages of sharding are as follows:  

1. Sharding reduces the amount of data that each shard needs to store and 

manage. For example, if the dataset was 1 TB in size and we were to distribute 

this over four shards, each shard would house just 256 GB data. Refer Figure 

3.4. As the cluster grows, the amount of data that each shard will store and 

manage will decrease.   

2. Sharding reduces the number of operations that each shard handles. For 

example, if we were to insert data, the application needs to access only that 

shard which houses that data.   

 

 

 



 

 

105 

 

 

3.2.7 Updating Information In-Place   

MongoDB updates data directly where it's stored, without allocating separate space or 

altering indexes. It prefers lazy-writes, meaning it writes to disk only once every second, 

as disk operations are slower than memory operations. This approach improves 

performance by reducing disk reads and writes. However, MongoDB doesn't guarantee 

immediate storage of data on disk, which is a tradeoff for its speed compared to 

competitors that write data to disk immediately. 

3.3 Terms Used in RDBMS and MongoDB 

RDBMS vs MongoDB Terminology Comparison 

RDBMS MongoDB 

Database Database 

Table Collection 

Record Document 

Columns Fields/Key-Value 

pairs 

Index Index 

Joins Embedded 

documents 

Primary Key Primary key (_id is a 

unique identifier) 

My Oracle 

Database Server Myd 

Database Client My 

3.3.1 Create Database in MongoDB 

Creating a database in MongoDB is straightforward. Below are the commands and their 

usage with examples. 



 

 

106 

 

Syntax for Creating a Database 

To create a new database, use the following syntax: 

use DATABASE_Name 

Example 

To create a database named myDB, use the following command: 

db 

This will return the name of the current database you are using, which should be myDB. 

Listing All Databases 

To get a list of all databases in your MongoDB server, use the following command: 

show dbs 

This command will list all the databases along with their sizes. 

Example Session 

Here is an example session that demonstrates these commands: 

shell 

> use myDB 

switched to db myDB 

> db 

myDB 

 

> show dbs 

admin   0.000GB 

config  0.000GB 



 

 

107 

 

local   0.000GB 

In this example: 

 The command use myDB switches the context to myDB. 
 The command db confirms that the current database is myDB. 
 The command show dbs lists all databases. Note that myDB might not appear in 

the list until it contains some data because MongoDB creates databases lazily. 

This simple sequence of commands helps in managing and verifying database creation 

in MongoDB. 

3.3.2 Drop Database in MongoDB 

The syntax to drop a database is as follows: 

db.dropDatabase(); 

To drop the database “myDB”, first ensure that you are currently using the “myDB” 

database and then use the db.dropDatabase() command. 

use myDB; 

db.dropDatabase(); 

Example Session: 

> use myDB 

switched to db myDB 

> db.dropDatabase(); 

{ "dropped" : "myDB", "ok" : 1 } 

> show dbs 

admin   0.000GB 

config  0.000GB 

local   0.000GB 

If no database is selected, the default database “test” is dropped. 



 

 

108 

 

3.4 Datatypes in MongoDB 

Data Type Description 

String Must be UTF-8 valid. Most commonly used data type to store data. 

Integer Used to store numerical values. Can be 32-bit or 64-bit, depending 

on the server. 

Boolean Used to store a true/false value. 

Double Used to store floating point (real) values. 

Min/Max Keys Used internally to compare a value against the lowest or highest 

BSON elements. 

Arrays Used to store arrays or lists of multiple values in a single key. 

Timestamp Used to record when a document has been modified or added. 

Null Used to store a NULL value. Represents missing or unknown 

values. 

Date Used to store the current date or time in Unix time format. 

Object ID Used to store the document’s unique identifier. 

Binary Data Used to store binary data such as images, binaries, etc. 

Code Used to store Script code in the document. 

Regular 

Expression 

Used to store regular expressions for pattern matching. 

3.5 MongoDB Query Language 

MongoDB Query Language (MQL) is a set of commands and operations used to 

interact with MongoDB databases. It includes methods for inserting, updating, querying, 

and managing data within MongoDB collections. 

3.5.1 Insert Method: The insert method is used to add one or more documents to a 

MongoDB collection. It accepts one or more documents as arguments and inserts them 

into the specified collection. 



 

 

109 

 

3.5.2 Save() Method: The save() method is used to save a document to a MongoDB 

collection. If the document already exists, it updates it; otherwise, it inserts a new 

document. 

3.5.3 Adding a New Field to an Existing Document – Update Method: The update 

method is used to modify existing documents in a collection. It can be used to add new 

fields to an existing document by specifying the $set operator. 

3.5.4 Removing an Existing Field from an Existing Document – Remove Method: 

The remove method is used to delete fields from existing documents in a collection. It 

can be used to remove specific fields from documents using the $unset operator. 

3.5.5 Finding Documents based on Search Criteria – Find Method: The find method 

is used to query documents in a collection based on specified criteria. It returns 

documents that match the specified query conditions. 

3.5.6 Dealing with NULL Values: MongoDB allows fields in documents to have null 

values. Queries can be constructed to search for documents where specific fields are 

null or not null. 

3.5.7 Count, Limit, Sort, and Skip: These methods provide additional functionality for 

querying documents. Count is used to count the number of documents that match a 

query. Limit restricts the number of documents returned by a query. Sort is used to sort 

the results of a query based on specified criteria. Skip is used to skip a specified 

number of documents in the result set. 

3.5.8 Arrays: MongoDB supports arrays as field values in documents. Arrays can be 

queried, updated, and manipulated using various array operators. 

3.5.9 Aggregate Function: The aggregate function is used to perform aggregation 

operations on documents in a collection. It allows for complex data analysis, grouping, 

and computation of aggregate values. 



 

 

110 

 

3.5.10 MapReduce Function: The MapReduce function is a data processing model 

used in MongoDB for performing complex computations on large datasets. It involves 

two main stages: map and reduce, and can be used for tasks such as data aggregation 

and analysis. 

3.5.11 JavaScript Programming: MongoDB allows users to execute JavaScript code 

for various database operations, including querying, updating, and data manipulation. 

3.5.12 Cursors in MongoDB: Cursors are used to iterate over query results in 

MongoDB. They allow for efficient retrieval of large result sets by fetching documents in 

batches.Table : CRUD Methods 

Method Description Example 

Insert Method Inserts a new 

document into a 

collection. 

db.Students.insert({StudRollNo: 'S101', 

StudName: 'Simon David', Grade: 'VII'}) 

Save() Method Inserts or 

updates a 

document (if _id 

exists). 

db.Students.save({_id: 1, StudRollNo: 'S101', 

StudName: 'Simon David', Grade: 'VII'}) 

Adding a New 

Field to an 

Existing Document 

– Update Method 

Adds a new field 

to an existing 

document. 

db.Students.update({StudRollNo: 'S101'}, 

{$set: {Hobbies: 'Reading'}}) 

Removing an 

Existing Field from 

an Existing 

Document – 

Remove Method 

Removes an 

existing field 

from a 

document. 

db.Students.update({StudRollNo: 'S101'}, 

{$unset: {Hobbies: ''}}) 

Finding 

Documents based 

Finds documents 

based on search 

db.Students.find({StudRollNo: 'S101'}) 



 

 

111 

 

on Search Criteria 

– Find Method 

criteria. 

Dealing with NULL 

Values 

Handles 

documents with 

NULL values. 

db.Students.find({Grade: null}) 

Count, Limit, Sort, 

and Skip 

Counts, limits, 

sorts, and skips 

documents in a 

result set. 

db.Students.find().count(), 

db.Students.find().limit(5), 

db.Students.find().sort({Grade: 1}), 

db.Students.find().skip(2) 

Arrays Handles arrays 

within 

documents. 

db.Students.insert({StudRollNo: 'S102', 

Subjects: ['Math', 'Science']}) 

Aggregate 

Function 

Performs 

aggregation 

operations. 

db.Students.aggregate([{$match: {Grade: 

'VII'}}, {$group: {_id: '$Grade', count: {$sum: 

1}}}]) 

MapReduce 

Function 

Uses the 

MapReduce 

function for data 

processing. 

db.Students.mapReduce(mapFunction, 

reduceFunction, {out: 'GradeCounts'}) 

Script 

Programming 

Embeds Script in 

queries. 

db.eval(function() { return 

db.Students.find().count(); }) 

Cursors in 

MongoDB 

Uses cursors to 

iterate over 

query results. 

var cursor = db.Students.find(); 

while(cursor.hasNext()) { 

printjson(cursor.next()); } 

Indexes Creates indexes 

to improve query 

performance. 

db.Students.createIndex({StudRollNo: 1}) 

MongoImport Imports data 

from a JSON or 

CSV file. 

mongoimport --db myDB --collection Students 

--file students.json 



 

 

112 

 

MongoExport Exports data to a 

JSON or CSV 

file. 

mongoexport --db myDB --collection Students 

--out students.json 

Automatic 

Generation of 

Unique Numbers 

for the “_id” Field 

Generates 

unique numbers 

for the _id field. 

db.Students.insert({_id: ObjectId(), 

StudRollNo: 'S103', StudName: 'Jane Doe'}) 

This table provides a quick reference to various methods and operations in MongoDB 

with simple examples. 

3.5.13 Indexes: Indexes are used to improve query performance by providing efficient 

access to data in MongoDB collections. They can be created on single fields or 

compound fields to speed up query execution. 

3.5.14 MongoImport: MongoImport is a command-line tool used to import data from 
external files into MongoDB collections. It supports various input formats such as JSON, 
CSV, and TSV. 

3.5.15 MongoExport: MongoExport is a command-line tool used to export data from 
MongoDB collections to external files. It allows users to extract data from MongoDB 
databases in formats such as JSON or CSV for analysis or backup purposes. 

These definitions provide an overview of the functionalities and capabilities of each 
MongoDB Query Language (MQL) method. 

CRUD (Create, Read, Update, and Delete) operations are fundamental to interacting 

with data in MongoDB. Below is a summary of the MongoDB query language methods 

with simple examples, presented in table format. 

CRUD Operations in RDBMS vs MongoDB 

Operation RDBMS MongoDB 

Insert Insert into Students (StudRollNo, 

StudName, Grade, Hobbies, 

db.Students.insert({_id: 1, 

StudRollNo: 'S101', StudName: 



 

 

113 

 

DOJ) Values ('S101', 'Simon 

David', 'VII', 'Net Surfing', '10-

Oct-2012') 

'Simon David', Grade: 'VII', Hobbies: 

'Net Surfing', DOJ: '10-Oct-2012'}) 

Select 

StudRollNo, 

StudName, 

Hobbies from 

Students 

where 

StudRollNo = 

'S101' 

db.Students.find({StudRollNo: 

'S101'}, {StudRollNo: 1, 

StudName: 1, Hobbies: 1, _id: 

0}) 

db.Students.update({StudRollNo: 

'S101'}, {$set: {Hobbies: 'Ice 

Hockey'}}) 

Update Update Students set Hobbies = 

'Ice Hockey' 

db.Students.update({}, {$set: 

{Hobbies: 'Ice Hockey'}}, {multi: 

true}) 

Delete Delete from Students where 

StudRollNo = 'S101' 

db.Students.remove({StudRollNo: 

'S101'}) 
 

Delete from Students db.Students.remove({}) 

Select Select * from Students db.Students.find() 
  

db.Students.find().pretty() 
 

Select * from Students where 

StudRollNo = 'S101' 

db.Students.find({StudRollNo: 

'S101'}) 
 

Select StudRollNo, StudName, 

Hobbies from Students 

db.Students.find({}, {StudRollNo: 1, 

StudName: 1, Hobbies: 1, _id: 0}) 

Here are examples of each MongoDB Query Language (MQL) method along with 

explanations: 

1. Insert Method: 

db.students.insertOne({ name: "Alice", age: 25, grade: "A" }); 



 

 

114 

 

Explanation: This command inserts a document with fields "name", "age", and 

"grade" into the "students" collection. 

2. Save() Method: 

db.students.save({ name: "Bob", age: 30, grade: "B" }); 

Explanation: The save() method saves a document into the collection. If the 

document already exists, it will be updated; otherwise, it will be inserted. 

3. Update Method: 

db.students.updateOne({ name: "Alice" }, { $set: { city: "New York" } }); 

Explanation: This command adds a new field "city" with the value "New York" to 

the document where the name is "Alice". 

4. Remove Method: 

db.students.updateOne({ name: "Bob" }, { $unset: { grade: "" } }); 

Explanation: This command removes the "grade" field from the document where 

the name is "Bob". 

5. Find Method: 

db.students.find({ age: { $gt: 25 } }); 

Explanation: This command retrieves documents from the "students" collection 

where the "age" field is greater than 25. 

6. Dealing with NULL Values: 

db.students.find({ city: null }); 



 

 

115 

 

Explanation: This query retrieves documents from the "students" collection 

where the "city" field is null. 

7. Count, Limit, Sort, and Skip: 

db.students.find().count(); 

db.students.find().limit(5); 

db.students.find().sort({ age: 1 }); 

db.students.find().skip(10); 

Explanation: These commands respectively count the number of documents, 

limit the result to 5 documents, sort the result by age in ascending order, and skip 

the first 10 documents in the result set. 

8. Arrays: 

db.students.updateOne({ name: "Alice" }, { $push: { hobbies: "Reading" } }); 

Explanation: This command adds the value "Reading" to the "hobbies" array 

field in the document where the name is "Alice". 

9. Aggregate Function: 

db.students.aggregate([ 

    { $group: { _id: "$grade", count: { $sum: 1 } } } 

]); 

Explanation: This aggregation pipeline groups documents by the "grade" field 

and counts the number of documents in each group. 

10. MapReduce Function: 

var mapFunction = function() { 

    emit(this.grade, 1); 

}; 



 

 

116 

 

var reduceFunction = function(key, values) { 

    return Array.sum(values); 

}; 

db.students.mapReduce(mapFunction, reduceFunction, { out: "grade_counts" }); 

Explanation: This MapReduce operation counts the number of documents per 

grade by emitting each grade with a value of 1, then reducing the values for each 

grade to get the total count. 

9.  Programming: 

// Writing a  function to find students above a certain age 

var findStudentsAboveAge = function(age) { 

    return db.students.find({ age: { $gt: age } }); 

} 

Explanation: This  function defines a reusable query to find students above a 

certain age, specified by the parameter "age". 

10. Cursors in MongoDB: 

// Iterating over documents using a cursor 

var cursor = db.students.find(); 

while (cursor.hasNext()) { 

    printjson(cursor.next()); 

} 

Explanation: This code snippet retrieves all documents from the "students" 

collection using a cursor, then iterates over each document and prints it to the 

console. 

11. MongoImport: 

// Importing data from a JSON file into the "students" collection 



 

 

117 

 

mongoimport --db mydb --collection students --file students.json 

Explanation: This command imports data from a JSON file ("students.json") into 

the "students" collection in the "mydb" database. 

12. MongoExport: 

// Exporting data from the "students" collection to a JSON file 

mongoexport --db mydb --collection students --out students.json 

Explanation: This command exports data from the "students" collection in the 

"mydb" database to a JSON file named "students.json". 

These examples illustrate various functionalities and operations available in MongoDB 

Query Language (MQL), providing flexibility and power in managing MongoDB 

databases. 

Lets sum up 

MongoDB is a NoSQL database known for its flexible document-oriented data model, 

which contrasts with the rigid schema of traditional RDBMS. It employs various unique 

terminologies; for instance, 'collections' in MongoDB are equivalent to 'tables' in 

RDBMS, and 'documents' are analogous to 'rows'. MongoDB supports diverse data 

types, including arrays and embedded documents, providing rich data structuring 

capabilities. Its powerful query language allows for dynamic querying and indexing, 

supporting a wide range of operations to efficiently retrieve and manipulate data. 

3.6. MapReduce Programming 

3.6.1 Introduction  

 In MapReduce Programming, Jobs (Applications) are split into a set of map tasks and 

reduce tasks. Then these tasks are executed in a distributed fashion on Hadoop cluster. 



 

 

118 

 

Each task processes small subset of data that has been assigned to it. This way, 

Hadoop distributes the load across the cluster.  

MapReduce job takes a set of files that is stored in HDFS (Hadoop Distributed 

File System) as input.  Map task takes care of loading, parsing, transforming, and 

filtering.  

The responsibility of reduce task is grouping and aggregating data that is produced by 

map tasks to generate final output. Each map task is broken into the following phases:   

1. RecordReader.   

2. Mapper.   

3. Combiner.   

4. Partitioner.   

The output produced by map task is known as intermediate keys and values. These 

intermediate keys and values are sent to reducer. The reduce tasks are broken into the 

following phases:   

1. Shuffle. 

2. Sort.   

3. Reducer.   

4. Output Format. 

 Hadoop assigns map tasks to the DataNode where the actual data to be processed 

resides. This way, Hadoop ensures data locality. Data locality means that data is not 

moved over network; only computational code moved to process data which saves 

network bandwidth.   

 

 

3.6.2 Mapper  

 A mapper maps the input key−value pairs into a set of intermediate key–value pairs. 

Maps are individual tasks that have the responsibility of transforming input records into 

intermediate key–value pairs.   

1. RecordReader: RecordReader converts a byte-oriented view of the input (as 

generated by the InputSplit) into a record-oriented view and presents it to the 



 

 

119 

 

Mapper tasks. It presents the tasks with keys and values. Generally, the key is 

the positional information and value is a chunk of data that constitutes the record.   

2. Map: Map function works on the key–value pair produced by RecordReader and 

generates zero or more intermediate key–value pairs. The MapReduce decides 

the key–value pair based on the context.   

3. Combiner: It is an optional function but provides high performance in terms of 

network bandwidth and disk space. It takes intermediate key–value pair provided 

by mapper and applies user-specific aggregate function to only that mapper. It is 

also known as local reducer.   

4. Partitioner: The partitioner takes the intermediate key–value pairs produced by 

the mapper, splits them into shard, and sends the shard to the particular reducer 

as per the user-specific code.  Usually, the key with same values goes to the 

same reducer. The partitioned data of each map task is written to the local disk of 

that machine and pulled by the respective reducer.  

3.6.3 Reducer   

The primary chore of the Reducer is to reduce a set of intermediate values (the ones 

that share a common key) to a smaller set of values. The Reducer has three primary 

phases: Shuffle and Sort, Reduce, and Output Format.   

1. Shuffle and Sort: This phase takes the output of all the partitioners and 

downloads them into the local machine where the reducer is running. Then these 

individual data pipes are sorted by keys which produce larger data list. The main 

purpose of this sort is grouping similar words so that their values can be easily 

iterated over by the reduce task.   

2. Reduce: The reducer takes the grouped data produced by the shuffle and sort 

phase, applies reduce function, and processes one group at a time. The reduce 

function iterates all the values associated with that key. Reducer function 

provides various operations such as aggregation, filtering, and combining data. 

Once it is done, the output (zero or more key–value pairs) of reducer is sent to 

the output format.  

3. Output Format: The output format separates key–value pair with tab (default) 

and writes it out to a file using record writer.   



 

 

120 

 

Figure 3.5 describes the chores of Mapper, Combiner, Partitioner, and Reducer for the 

word count problem.  The Word Count problem has been discussed under “Combiner” 

and “Partitioner”.   

 

Figure 3.5 Chores of Mapper, Combiner, Partitioner, and Reducer. 

3.6.4 Combiner   

It is an optimization technique for MapReduce Job. Generally, the reducer class is set to 

be the combiner class. The difference between combiner class and reducer class is as 

follows:   

1. Output generated by combiner is intermediate data and it is passed to the 

reducer.   

2. Output of the reducer is passed to the output file on disk.   

The sections have been designed as follows:   

Objective: What is it that we are trying to achieve here?   

Input Data: What is the input that has been given to us to act upon?   

Act: The actual statement/command to accomplish the task at hand.   

Output: The result/output as a consequence of executing the statement.   



 

 

121 

 

Objective: Write a MapReduce program to count the occurrence of similar words in a 

file. Use combiner for optimization.  Note: Refer Chapter 5 – Hadoop for Mapper Class 

and Reduce Class and Driver Program.   

Input Data:   

Welcome to Hadoop Session   

Introduction to Hadoop   

Introducing Hive   

Hive Session   

Pig Session   

Act: In the driver program, set the combiner class as shown below.  

job.setCombinerClass(WordCounterRed.class);   

// Input and Output Path   

FileInputFormat.addInputPath(job, new Path("/mapreducedemos/lines.txt"));  
FileOutputFormat.setOutputPath(job, new 
Path("/mapreducedemos/output/wordcount/")); 
 

hadoop jar <<jar name>> <<driver class>> <<input path>> <<output path>>   

Here driver class name, input path, and output path are optional arguments.  

 



 

 

122 

 

 

3.7 Compression   

In MapReduce programming, you can compress the MapReduce output file. 

Compression provides two benefits as follows:   

1. Reduces the space to store files.   

2. Speeds up data transfer across the network.   

You can specify compression format in the Driver Program as shown below:   
 
conf.setBoolean("mapred.output.compress", true);  
conf.setClass("mapred.output.compression.codec", 
GzipCodec.class,CompressionCodec.class);   
 
Here, codec is the implementation of a compression and decompression algorithm. 
GzipCodec is the compression algorithm for gzip. This compresses the output file.  
Lets sum up 

MapReduce is a programming model designed for processing and generating large 

datasets in a distributed computing environment. It divides tasks into two primary 

components: the Mapper, which processes input data and produces intermediate key-



 

 

123 

 

value pairs, and the Reducer, which merges these intermediate outputs to produce the 

final result. The Combiner acts as a mini-reducer to optimize and reduce data transfer 

between Mappers and Reducers. The Partitioner determines how the intermediate key-

value pairs are distributed across the Reducers, ensuring balanced and efficient 

processing. This model is fundamental to handling big data in parallel across numerous 

nodes in a cluster. 

 



 

 

124 

 

UNIT III: SUMMARY 

 Terms used in RDBMS and MongoDB: 

o MongoDB uses collections (analogous to tables in RDBMS) to store 

documents (similar to rows/records in RDBMS). Each document is a 

JSON-like structure composed of field-value pairs (similar to columns in 

RDBMS). Indexes can be created to optimize query performance. 

 Data Types: 

o MongoDB supports a variety of data types including string, integer, 

double, boolean, date, array, object, and others. This flexibility allows for 

schema-less or schema-flexible designs, accommodating changes in data 

structure over time. 

 Query Language (MQL): 

o MongoDB Query Language (MQL) supports CRUD operations (Create, 

Read, Update, Delete) for document management. It also includes an 

aggregation framework for performing complex operations like grouping, 

sorting, and transforming data within the database. 

 Replication and High Availability: 

o MongoDB utilizes replica sets to provide data redundancy and fault 

tolerance. It automatically elects a primary node and maintains multiple 

secondary nodes that replicate data asynchronously from the primary. 

 Sharding: 

o MongoDB sharding distributes data across multiple servers (or shards) to 

handle large datasets and high throughput. It partitions data based on a 

shard key and distributes queries across shards for parallel execution. 

 Mapper: 

o In the MapReduce paradigm, the Mapper function processes input data in 

key-value pairs and generates intermediate key-value pairs based on a 

specified logic or computation. 

 Reducer: 



 

 

125 

 

o Reducer functions receive intermediate key-value pairs from multiple 

mappers, aggregate or process them according to a defined logic, and 

produce final output key-value pairs. 

 Combiner: 

o Optional in MapReduce, a Combiner function locally aggregates 

intermediate data outputted by mappers before transmitting it to reducers. 

This reduces the amount of data transferred over the network, optimizing 

performance. 

 Partitioner: 

o Determines which reducer will receive specific keys' intermediate data, 

ensuring that data with the same key ends up on the same reducer. This 

optimizes data processing and reduces network traffic. 

 Searching and Sorting: 

o MapReduce frameworks like Hadoop MapReduce distribute tasks across 

nodes in a cluster, enabling efficient searching and sorting of large 

datasets by leveraging parallel processing and distributed computing. 

 Compression: 

o MapReduce supports data compression techniques to reduce storage 

requirements and improve data transfer efficiency between nodes in the 

cluster. This is crucial for optimizing performance when dealing with large 

volumes of data. 



 

 

126 

 

Glossary 

  Collection: A MongoDB concept analogous to a table in relational databases, 

containing documents. 

 Document: A record in MongoDB, similar to a row in relational databases, 

representing data as JSON-like structures. 

 Field: A key-value pair within a document, similar to a column in relational 

databases. 

 Index: A feature in MongoDB for optimizing query performance by facilitating fast 

data retrieval. 

 MQL (MongoDB Query Language): Language used to query and manipulate 

data in MongoDB, supporting CRUD operations and aggregation. 

 Mapper: Function in the MapReduce paradigm that processes input data and 

emits intermediate key-value pairs. 

 Reducer: Function that processes intermediate key-value pairs generated by 

mappers and produces final output. 

 Combiner: Optional function that performs local reduction of data before sending 

it to reducers, optimizing network bandwidth. 

 Partitioner: Determines which reducer instance receives a given key's 

intermediate data, ensuring efficient data distribution. 

 Searching and Sorting: MapReduce framework capability to search and sort 

large datasets by distributing tasks across nodes in a cluster. 

 Compression: Techniques used in MapReduce to reduce storage requirements 

and enhance data transfer efficiency. 



 

 

127 

 

Checkup Your Progress 

EXERCISE 1: Fill in each gap with the right word from the list 

1. MongoDB uses collections and documents instead of tables and rows found in 

traditional _______________ (RDBMS, NoSQL, SQL). 

2. MongoDB supports various data types including string, integer, double, boolean, 

date, array, and _______________ (object, function, structure). 

3. MongoDB Query Language (MQL) allows for performing CRUD operations and 

advanced _______________ (queries, processing, administration). 

4. In MapReduce programming, the _______________ function processes input 

data and emits intermediate key-value pairs (Mapper, Reducer, Combiner). 

5. The _______________ function in MapReduce takes intermediate data from the 

Mapper and produces the final output (Mapper, Reducer, Combiner). 

EXERCISE 2: Read the questions below and circle if the answer is True 

1. MongoDB uses collections and documents, similar to tables and rows in 

relational databases – True / False 

2. MongoDB supports only a limited set of data types compared to traditional 

relational databases - True / False 

3. MongoDB Query Language (MQL) supports CRUD operations but does not offer 

aggregation capabilities - True / False 

4. In MapReduce programming, the Reducer function processes input data and 

emits intermediate key-value pairs - True / False 

5. MapReduce can be used for tasks like searching, sorting, and aggregating data 

across distributed systems - True / False 

EXERCISE 3: Choose the correct answer 

 

1. Which of the following is true about MongoDB compared to traditional relational 
databases?  

a) MongoDB uses tables and rows for data storage. 



 

 

128 

 

b) MongoDB supports a fixed schema for data. 

c) MongoDB uses collections and documents for data storage. 

2.     What type of data does MongoDB support?  

a) Only structured data with a fixed schema. 

b) Only unstructured data with a flexible schema. 

c) Various data types including string, integer, array, and more. 

3.    Which language is used for querying data in MongoDB?  

a) SQL 

b) MQL (MongoDB Query Language) 

c) NoSQL 

4.     In MapReduce programming, what is the role of the Reducer function?  

a) Processes input data and emits intermediate key-value pairs. 

b) Filters data based on a condition. 

c) Aggregates data and produces the final output. 

5.     What tasks can MapReduce be used for in distributed computing?  

a) Real-time data processing only. 

b) Searching, sorting, and aggregating large datasets. 

c) Database transactions.   

EXERCISE 4: Match the following  

 

1. MongoDB 

Query 

Language 

(MQL) 

-  A. Aggregates data and produces the final output in 

MapReduce 

 

2. Reducer - B. Determines which Reducer instance will receive a given 

key's intermediate data 

3. Combiner - C. Performs a local reduction of data before sending it to the 

Reducer  

4. Partitioner - D. Used to query and manipulate data in MongoDB 



 

 

129 

 

5. Searching and 

Sorting 

- E. Tasks that can be performed using MapReduce in distributed 

systems 

EXERCISE 5: Self-Assessment Questions  

 

1. What is the equivalent of a "table" in RDBMS in MongoDB? 

2. Name two data types supported by MongoDB. 

3. Write a basic MongoDB query to find all documents in a collection where the 
"age" field is greater than 25. 

4. What is the primary function of the Mapper in a MapReduce job? 

5. What role does the Reducer play in the MapReduce framework? 
 

Answer for Checkup Your Progress 

 EXERCISE 1: 

1.SQL, 2. Object 3. Queries 4. Mapper 5. Reducer 

EXERCISE 2: 

1. False 2. False 3. False 4. False 5. True 

EXERCISE 3: 

1. c) 2. c) 3. b) 4. c) 5. b)  

EXERCISE 4: 

1.D, 2.A, 3.C, 4.B, 5.E. 

Open Source E-content Links: 

1. https://www.mongodb.com/docs/manual/ 

2. https://www.mongodb.com/docs/manual/core/map-reduce/ 



 

 

130 

 

3. https://www.mongodb.com/docs/manual/tutorial/query-documents/ 

4. https://www.mongodb.com/docs/manual/reference/bson-types/ 

 

References: 

1. MongoDB Documentation. (2023). Retrieved June 28, 2024, from 

https://docs.mongodb.com/manual/ 

2. Chodorow, K. (2013). MongoDB: The Definitive Guide (2nd ed.). Sebastopol, CA: 

O'Reilly Media. 

3. MongoDB Data Types. (2023). Retrieved June 28, 2024, from 

https://docs.mongodb.com/manual/reference/bson-types/ 

4. MapReduce Concepts in MongoDB. (2023). Retrieved June 28, 2024, from 

https://docs.mongodb.com/manual/core/map-reduce/ 

5. Apache Hadoop MapReduce Tutorial. (2023). Retrieved June 28, 2024, from 

https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-

mapreduce-client-core/MapReduceTutorial.html 

 



 

 

131 

 

Unit IV:  HIVE 

UNIT IV OBJECTIVE  

The objective of this unit is to provide a comprehensive understanding of Apache Hive, 

including its architecture, data types, and file formats. Learners will explore the Hive 

Query Language (HQL) for data manipulation and analysis, delve into advanced 

features such as partitions and bucketing, and learn how to create and manage views, 

sub-queries, joins, aggregations, and the GROUP BY and HAVING clauses. The unit 

will cover the RCFile format and its implementation, guide the creation of Hive User 

Defined Functions (UDFs), and explain the concepts of serialization and deserialization 

for handling various data formats. By the end of this unit, learners will be equipped with 

the knowledge to efficiently utilize Hive for data warehousing and analysis in a Hadoop 

ecosystem. 

 

Unit Summary 

1.Introduction to Hive 

o Architecture of Hive 

o Data Types and File Formats in Hive 

o Hive Query Language Statements 

o Partitions and Bucketing in Hive 

o Views and Sub-Queries in Hive 

o Joins, Aggregations, Group by, and Having in Hive 

o RCFile Implementation 

o User Defined Functions (UDFs) in Hive 

o Serialization and Deserialization 

4.1 What is Hive?   

Hive is a Data Warehousing tool that sits on top of Hadoop. Refer Figure 8.1. Hive is 

used to process structured data in Hadoop. The three main tasks performed by Apache 

Hive are:   



 

 

132 

 

1. Summarization  

2. Querying   

3. Analysis  

Facebook initially created Hive component to manage their ever-growing volumes of log 

data. Later Apache software foundation developed it as open-source and it came to be 

known as Apache Hive.  Hive makes use of the following:   

1. HDFS for Storage.   

2. MapReduce for execution.   

3. Stores metadata/schemas in an RDBMS.   

Hive provides HQL (Hive Query Language) or HiveQL which is similar to SQL. Hive 

compiles   queries into MapReduce jobs and then runs the job in the Hadoop Cluster. 

Hive provides extensive data type functions and formats for data summarization and 

analysis.  Note:   

1. Hive is not RDBMS.   

2. It is not designed to support OLTP (Online Transaction Processing).   

3. It is not designed for real-time queries.   

4. It is not designed to support row-level updates.   

4.1.1 History of Hive and Recent Releases of Hive   

The history of Hive and recent releases of Hive are illustrated pictorially in Figures 4.1 

and 4.2, respectively.  

 

Figure 4.1 History of Hive 

 



 

 

133 

 

 

Figure 4.2 Recent releases of Hive 

4.1.2 Hive Features   

1. It is similar to SQL.   

2. HQL is easy to code.   

3. Hive supports rich data types such as structs, lists and maps.   

4. Hive supports filters, group-by and order-by clauses.  

5. Custom Types, Custom Functions can be defined.  

4.1.3 Hive Integration and Work Flow   

Figure 4.3 illustrates the workflow for log file analysis. The process begins with the 

storage of hourly log data directly into the Hadoop Distributed File System (HDFS). 

Once stored, the log data undergoes a cleansing process to remove any irrelevant or 

erroneous information. After cleansing, the log data is compressed to optimize storage 

and processing efficiency. Subsequently, Hive tables are created to facilitate querying 

and analyzing the log data. Typically, multiple Hive tables (e.g., Hive Table 1 and Hive 

Table 2) are generated to organize the cleansed and compressed data for different 

analytical purposes. This workflow streamlines the handling, processing, and querying 

of log files, enabling efficient data analysis and insights extraction. 

 



 

 

134 

 

Figure 4.3 Flow of  log analysis file 

4.1.4 Hive Data Units   

1. Databases: The namespace for tables.   

2. Tables: Set of records that have similar schema.   

3. Partitions: Logical separations of data based on classification of given 

information as per specific attributes. Once hive has partitioned the data based 

on a specified key, it starts to assemble the records into specific folders as and 

when the records are inserted.   

4. Buckets (or Clusters): Similar to partitions but uses hash function to segregate 

data and determines the cluster or bucket into which the record should be 

placed.  

 

Figure 4.4 Data units as arranged in  a Hive 

 

Figure 4.5 Semblance of Hive Sturcute with database 

When to Use Partitioning/Bucketing?   

Bucketing works well when the field has high cardinality (cardinality is the number of 

values a column or field can have) and data is evenly distributed among buckets. 

Partitioning works best when the cardinality of the partitioning field is not too high. 



 

 

135 

 

Partitioning can be done on multiple fields with an order (Year/Month/ Day) whereas 

bucketing can be done on only one field.   

Figure 4.4 shows how these data units are arranged in a Hive Cluster. Figure 4.5 

describes the semblance of Hive structure with database.   

A database contains several tables. Each table is constituted of rows and 

columns. In Hive, tables are stored as a folder and partition tables are stored as a sub-

directory. Bucketed tables are stored as a file.   

 

4.2 Hive Architecture   

Hive Architecture is depicted in Figure 4.6. The various parts are as follows:   

1. Hive Command-Line Interface (Hive CLI): The most commonly used interface 

to interact with Hive.   

2. Hive Web Interface: It is a simple Graphic User Interface to interact with Hive 

and to execute query.   

3. Hive Server: This is an optional server. This can be used to submit Hive Jobs 

from a remote client.  

 

Figure 4.6 Hive Architecture 

4. JDBC/ODBC: Jobs can be submitted from a JDBC Client. One can write a  code 

to connect to  Hive and submit jobs on it.   

5. Driver: Hive queries are sent to the driver for compilation, optimization and 

execution. 



 

 

136 

 

6. Metastore: Hive table definitions and mappings to the data are stored in a 

Metastore. A Metastore consists of the following:   

• Metastore service: Offers interface to the Hive.  

• Database: Stores data definitions, mappings to the data and others.   

The metadata which is stored in the metastore includes IDs of Database, IDs of 

Tables, IDs of Indexes, etc., the time of creation of a Table, the Input Format 

used for a Table, the Output Format used for a Table, etc. The metastore is 

updated whenever a table is created or deleted from Hive. There are three kinds 

of metastore.   

1. Embedded Metastore: This metastore is mainly used for unit tests. Here, 

only one process is allowed to connect to the metastore at a time. This is 

the default metastore for Hive. It is Apache Derby Database. In this 

metastore, both the database and the metastore service run embedded in 

the main Hive Server process. Figure 4.7 shows an Embedded Metastore.   

2. Local Metastore: Metadata can be stored in any RDBMS component like 

My. Local metastore allows multiple connections at a time. In this mode, 

the Hive metastore service runs in the main Hive Server process, but the 

metastore database runs in a separate process, and can be on a separate 

host.  Figure 4.8 shows a Local Metastore.   

3. Remote Metastore: In this, the Hive driver and the metastore interface 

run on different JVMs (which can run on different machines as well) as in 

Figure 4.9 This way the database can be fire-walled from the Hive user 

and also database credentials are completely isolated from the users of 

Hive.  

 

Figure 4.7 Embedded Metastore 



 

 

137 

 

 

Figure 4.8 Local Metastore 

 

Figure 4.9 Remote Metastore 

4.3 Hive Data Types 

In Apache Hive, data types define the nature of the data that can be stored in Hive 

tables. Hive supports a wide range of data types, which can be categorized into 

primitive types and complex types. 

4.3.1 Primitive Data Types 

Table 4.1 Numeric Data Types 

Data Type Description 

TINYINT 1-byte signed integer 

SMALLINT 2-byte signed integer 

INT 4-byte signed integer 

BIGINT 8-byte signed integer 

FLOAT 4-byte single-precision floating-point 

DOUBLE 8-byte double-precision floating-point number 

 

 



 

 

138 

 

Table 4.2 String Types 

Data Type Description 

STRING String type 

VARCHAR Variable-length string type (only available starting with Hive 0.12.0) 

CHAR Fixed-length string type (only available starting with Hive 0.13.0) 
 

Strings can be expressed in either single quotes (‘) or double quotes (“) 

Table 4.3 Miscellaneous Types 

Data Type Description 

BOOLEAN Boolean type (true/false) 

BINARY Binary data type (only available starting with Hive) 

 

Tables 4.1, 4.2 and 4.3 show numeric data types, string types and miscellaneous type. 

Various collection data types are shown in table 4.4. 

4.3.2 Collection Data Types  

Table 4.4 Collection Data Types 

Collection 

Type 

Description Example 

STRUCT Similar to ‘C’ struct. Fields are accessed using 

dot notation. 

struct('John', 'Doe') 

MAP A collection of key–value pairs. Fields are 

accessed using [] notation. 

map('first', 'John', 

'last', 'Doe') 

ARRAY Ordered sequence of same types. Fields are 

accessed using array index. 

array('John', 'Doe') 

 

 

 



 

 

139 

 

4.4 Hive File Format 

The file formats in Hive specify how records are encoded in a file. 

4.4.1 Text File 

 Description: The default file format. Each record is a line in the file. Different 

control characters are used as delimiters: 

o ^A (octal 001): Separates all fields. 

o ^B (octal 002): Separates elements in the array or struct. 

o ^C (octal 003): Separates key–value pairs. 

o \n: New line character. 

 Supported Text Files: CSV, TSV, JSON, XML 

4.4.2 Sequential File 

 Description: Flat files that store binary key–value pairs. Includes compression 

support, reducing CPU and I/O requirements. 

4.4.3 RCFile (Record Columnar File) 

 RCFile stores data in a column-oriented manner, making aggregation operations 

more efficient. Below are examples illustrating how a table is partitioned and 

serialized in RCFile format. Table 4.5 shows with four columns. Table 4.6 shows 

with two columns and table 4.7 shows the RCF file format. 

Table 4.5 A table with four columns 

Row Group 1 

C1 C2 C3 C4 

11 12 13 14 

21 22 23 24 

31 32 33 34 

41 42 43 44 

51 52 53 54 



 

 

140 

 

       

  

Table 4.6 Table with two row groups      

         

 

 

 

 

 

 

Table 4.7 Table in RCFile Format

Row Group 1 

C1 C2 C3 C4 

11 12 13 14 

21 22 23 24 

31 32 33 34 

       

Row Group 1 Row Group 2 

11, 21, 31 41, 51 

12, 22, 32 42, 52 

13, 23, 33 43, 53 

14, 24, 34 44, 54 



 

141 

 

 In RCFile format, the table data is partitioned both horizontally into row groups 

and vertically within each row group. This structure enhances the efficiency of 

data aggregation operations. 

 Partitioning: Instead of only partitioning the table horizontally like row-oriented 

DBMS (row-store), RCFile partitions the table first horizontally and then vertically 

to serialize the data. 

o First, the table is partitioned into multiple row groups horizontally. For 

example, Table 4.6 is partitioned into two row groups, each containing 

three rows. 

o Next, within each row group, RCFile partitions the data vertically like 

column-store. 

4.5 Hive Query Language (HQL) 

Hive Query Language (HQL) provides -like operations for data management and 

manipulation. Below are some key tasks that can be easily performed using HQL: 

1. Create and manage tables and partitions. 

2. Support various relational, arithmetic, and logical operators. 

3. Evaluate functions. 

4. Download the contents of a table to a local directory or results of queries to 

HDFS directory. 

4.5.1 DDL (Data Definition Language) Statements 

These statements are used to create and modify tables and other objects in the 

database. The DDL commands include: 

1. Create/Drop/Alter Database 

2. Create/Drop/Truncate Table 



 

143 

 

3. Alter Table/Partition/Column 

4. Create/Drop/Alter View 

5. Create/Drop/Alter Index 

6. Show 

7. Describe 

4.5.2 DML (Data Manipulation Language) Statements 

These statements are used to retrieve, store, modify, delete, and update data in the 

database. The DML commands include: 

1. Loading files into table 

2. Inserting data into Hive Tables from queries 

Note: Hive 0.14 supports update, delete, and transaction operations. 

4.5.3 Hive DDL and DML Examples 

Describe Database 

The DESCRIBE DATABASE command provides metadata about a specified database. 

This includes information about the database location, owner, and parameters. 

Syntax: 

DESCRIBE DATABASE [EXTENDED] database_name; 

Example: 

DESCRIBE DATABASE my_database; 

Output: 

Database Name:       my_database 

Description:         Database for storing student records 



 

144 

 

Location:            hdfs://path/to/my_database 

Owner:               user 

Parameters:          {...} 

Show Databases 

The SHOW DATABASES command lists all the databases available in the Hive 

metastore. 

Syntax: 

SHOW DATABASES; 

Example: 

SHOW DATABASES; 

Output: 

arduino 

default 

my_database 

sales_database 

employee_database 

Table 4.8 Data Definition Language (DDL) 

DDL Command Description 

CREATE DATABASE 

mydatabase; 

Creates a new database named "mydatabase". 

SHOW DATABASES; Displays a list of all databases. 

USE mydatabase; Sets the current database context to "mydatabase". 

CREATE TABLE students Creates a table named "students" with two 



 

145 

 

(student_id INT, name STRING); columns: "student_id" of type INT and "name" of 

type STRING. 

SHOW TABLES; Displays a list of all tables in the current database. 

ALTER TABLE students ADD 

COLUMN age INT; 

Adds a new column named "age" of type INT to the 

"students" table. 

DESCRIBE students; Shows the structure of the "students" table. 

CREATE VIEW student_view AS 

SELECT * FROM students; 

Creates a view named "student_view" based on 

the "students" table. 

DROP TABLE students; Deletes the "students" table. 

CREATE EXTERNAL TABLE 

ext_students (student_id INT, 

name STRING) LOCATION 

'/path/to/data'; 

Creates an external table named "ext_students" 

with two columns: "student_id" of type INT and 

"name" of type STRING. The table is stored 

externally at the specified location. 

Table 4.9 Data Manipulation Language 

DML Command Description 

LOAD DATA INPATH '/path/to/data' INTO 

TABLE students; 

Loads data from a file into the 

"students" table. 

INSERT INTO TABLE students VALUES (1, 

'John'); 

Inserts a new row into the "students" 

table. 

INSERT INTO TABLE students SELECT * 

FROM other_table; 

Inserts data from another table into the 

"students" table. 

SELECT * FROM students; Retrieves all rows from the "students" 

table. 

SELECT name, age FROM students 

WHERE age > 18; 

Retrieves the name and age of 

students older than 18. 

UPDATE students SET age = 25 WHERE 

name = 'John'; 

Updates the age of the student named 

"John". 



 

146 

 

DELETE FROM students WHERE age < 18; Deletes records of students younger 

than 18. 

These examples illustrate various DDL (Data Definition Language) and DML (Data 

Manipulation Language) commands in Hive, including the creation of external tables is 

shown in tables 4.8 and 4.9. 

4.5.4 Tables in Hive 

Hive provides two kinds of tables: 

1. Internal or Managed Table 

2. External Table 

4.5.4.1 Managed Table 

1. Storage: Hive stores the managed tables under the warehouse folder in Hive. 

2. Lifecycle Management: The complete lifecycle of the table and data is managed 

by Hive. 

3. Data and Metadata Deletion: When an internal table is dropped, both the data 

and the metadata are dropped. 

When you create a table in Hive, by default, it is an internal or managed table. If one 

needs to create an external table, the keyword "EXTERNAL" must be used. 

Table Type Description 

Internal Table 

(Managed Table) 

1. Stored under the warehouse folder in Hive.2. Hive manages the 

complete lifecycle of the table and data.3. Dropping the table also 

drops the data and metadata. 

External Table 1. The table schema is managed by Hive, but the data is stored 

externally.2. Dropping the table only drops the metadata, not the 

data. The data remains in the specified location. 

Example Commands 



 

147 

 

Creating an Internal Table (Managed Table) 

CREATE TABLE students ( 

    student_id INT, 

    name STRING, 

    age INT, 

    grade STRING 

); 

Creating an External Table 

CREATE EXTERNAL TABLE ext_students ( 

    student_id INT, 

    name STRING, 

    age INT, 

    grade STRING 

) 

LOCATION '/path/to/external/data'; 

4.5.5 Partitions 

Partitions allow Hive to divide a table into parts based on the values of a particular 

column, improving query performance by scanning only relevant partitions. 

CREATE TABLE students ( 

    student_id INT, 

    name STRING, 

    age INT 

) 

PARTITIONED BY (grade STRING); 

 



 

148 

 

Loading Data into a Partitioned Table 

LOAD DATA INPATH '/path/to/data' INTO TABLE students PARTITION (grade='A'); 

Partition is of two types:  

4.5.5.1 STATIC PARTITION: It is upon the user to mention the partition (the 

segregation unit) where the data from the file is to be loaded. 

Static partitions comprise columns whose values are known at compile time.   

Example: 

Objective: To create static partition based on “gpa” column.  Act:  CREATE 

TABLE IF NOT EXISTS STATIC_PART_STUDENT (rollno INT, name STRING)  

PARTITIONED BY (gpa FLOAT) ROW FORMAT DELIMITED FIELDS 

TERMINATED  BY '\t';  Outcome:  Objective: Load data into partition table from 

table.  Act:  INSERT OVERWRITE TABLE STATIC_PART_STUDENT 

PARTITION 

Objective: Load data into partition table from table.  Act:  INSERT OVERWRITE 

TABLE STATIC_PART_STUDENT PARTITION (gpa =4.0)  SELECT rollno, 

name from EXT_STUDENT where gpa=4.0;  Outcome:  

4.5.5.2 DYNAMIC PARTITION: The user is required to simply state the column, basis 

which the partitioning will take place. Hive will then create partitions basis the unique 

values in the column on which partition is to be carried out.  

Dynamic partition has columns whose values are known only at Execution Time.   

Example: 

Objective: To create dynamic partition on column date.  Act:  CREATE TABLE IF NOT 

EXISTS DYNAMIC_PART_STUDENT(rollno INT,name STRING)  PARTITIONED BY 

(gpa FLOAT) ROW FORMAT DELIMITED FIELDS TERMINATED  BY '\t';   



 

149 

 

4.5.6 Bucketing 

Bucketing further subdivides data into manageable parts within a partition, enhancing 

the performance of specific types of queries. 

CREATE TABLE bucketed_students ( 

    student_id INT, 

    name STRING, 

    age INT 

) 

CLUSTERED BY (student_id) INTO 4 BUCKETS; 

Loading Data into a Bucketed Table 

INSERT INTO TABLE bucketed_students 

SELECT * FROM students; 

4.5.7 Views 

Views are virtual tables representing the result of a stored query. They help in 

simplifying complex queries and data abstraction. 

CREATE VIEW student_view AS 

SELECT student_id, name, grade 

FROM students 

WHERE age > 18; 

Querying the View 

SELECT * FROM student_view; 

 

 



 

150 

 

4.5.8 Sub-Query 

Sub-queries are nested queries within a main query. They allow for complex data 

retrieval operations and are useful for breaking down complex logic into manageable 

parts. 

SELECT name FROM students WHERE age IN (SELECT age FROM students WHERE 

grade = 'A'); 

4.6 Tables 

4.6.1 Creating an Internal Table (Managed Table) 

CREATE TABLE students ( 

    student_id INT, 

    name STRING, 

    age INT, 

    grade STRING 

); 

4.6.2 Creating an External Table 

CREATE EXTERNAL TABLE ext_students ( 

    student_id INT, 

    name STRING, 

    age INT, 

    grade STRING 

) 

LOCATION '/path/to/external/data'; 

4.6.2.1 External or Self-Managed Table   

1. When the table is dropped, it retains the data in the underlying location.   

2. External keyword is used to create an external table.   

3. Location needs to be specified to store the dataset in that particular location.  



 

151 

 

 

4.7 Partitions 

Creating a Partitioned Table 

CREATE TABLE students ( 

    student_id INT, 

    name STRING, 

    age INT 

) 

PARTITIONED BY (grade STRING); 

Loading Data into a Partitioned Table 

LOAD DATA INPATH '/path/to/data' INTO TABLE students PARTITION (grade='A'); 

4.8 Joins 

Joins are used to combine rows from two or more tables based on related columns. 

Hive supports various types of joins including INNER JOIN, LEFT JOIN, RIGHT JOIN, 

and FULL JOIN. 

Inner Join 

SELECT s.student_id, s.name, g.grade 

FROM students s 

JOIN grades g ON s.student_id = g.student_id; 

Left Join 

SELECT s.student_id, s.name, g.grade 

FROM students s 

LEFT JOIN grades g ON s.student_id = g.student_id; 



 

152 

 

Right Join 

SELECT s.student_id, s.name, g.grade 

FROM students s 

RIGHT JOIN grades g ON s.student_id = g.student_id; 

Full Join 

SELECT s.student_id, s.name, g.grade 

FROM students s 

FULL JOIN grades g ON s.student_id = g.student_id; 

4.9 Aggregation 

Using Aggregation Functions 

COUNT 

SELECT grade, COUNT(*) as student_count 

FROM students 

GROUP BY grade; 

Sum 

SELECT grade, SUM(age) as total_age 

FROM students 

GROUP BY grade; 

Average 

SELECT grade, AVG(age) as average_age 

FROM students 

GROUP BY grade; 

 



 

153 

 

4.10 Group By and Having 

 Group By: Groups rows that have the same values into summary rows, like "find 

the number of customers in each country". 

 Having: Used to filter records that work on summarized Group By results. 

SELECT grade, COUNT(*) as student_count FROM students GROUP BY 

grade;; 

Having 

SELECT grade, COUNT(*) as student_count 

FROM students 

GROUP BY grade 

HAVING COUNT(*) > 10; 

.6 9.6 RCFILE Implementation RCFile (Record Columnar File) is a data placement 

structure that determines how to store relational tables on computer clusters.  Objective: 

To work 

Objective: To work with RCFILE Format.  

 

Act:  CREATE TABLE STUDENT_RC(rollno int, name string,gpa float) STORED AS 

RCFILE;  INSERT OVERWRITE table STUDENT_RC SELECT * FROM STUDENT;  

SELECT SUM(gpa) FROM STUDENT_RC;   

The output of the provided commands in a Hive environment would typically be as 

follows: 

1. Creating Table: The table STUDENT_RC will be created with the specified 

schema (columns rollno of type int, name of type string, and gpa of type float) stored 

in the RCFILE format. 

2. Inserting Data: The data from the existing STUDENT table will be overwritten into 

the STUDENT_RC table. Assuming the schema of STUDENT matches that of 



 

154 

 

STUDENT_RC, all records from STUDENT will replace any existing data in 

STUDENT_RC. 

3. Selecting Sum of GPA: After the data insertion, the query SELECT SUM(gpa) 

FROM STUDENT_RC; will calculate the sum of the gpa column from the 

STUDENT_RC table. The result will be a single value representing the sum of all 

GPA values in the STUDENT_RC table. 

The specific numerical result of the SUM(gpa) query will depend on the data stored in the 

STUDENT table and the values of the gpa column. 

4.11 SERDE: SerDe stands for Serializer/Deserializer: 

1. Contains the logic to convert unstructured data into records. 

2. Implemented using Java 

3. Serializers are used at the time of writing. 

4. Deserializers are used at query time (SELECT Statement).  

Deserializer interface takes a binary representation or string of a record, converts it into 

an object that Hive can then manipulate. Serializer takes a object that Hive has been 

working with    and translates it into something that Hive can write to HDFS. 

Example 

Objective: To manipulate XML data using SERDE (Serializer/Deserializer). 

Input XML Data 

xml 

<employee> 

    <empid>1001</empid> 

    <name>John</name> 



 

155 

 

    <designation>Team Lead</designation> 

</employee> 

<employee> 

    <empid>1002</empid> 

    <name>Smith</name> 

    <designation>Analyst</designation> 

</employee> 

Steps to Manipulate XML Data 

1. Creating Table: 

CREATE TABLE XMLSAMPLE (xmldata STRING); 

2. Loading XML Data: 

LOAD DATA LOCAL INPATH '/root/hivedemos/input.xml' INTO TABLE 

XMLSAMPLE; 

3. Creating XPath Table: 

CREATE TABLE xpath_table AS 

SELECT xpath_int(xmldata,'employee/empid'), 

       xpath_string(xmldata,'employee/name'), 

       xpath_string(xmldata,'employee/designation') 

FROM xmlsample; 

4. Selecting Data from XPath Table: 

SELECT * FROM xpath_table; 

Expected Outcome 

The xpath_table will contain records extracted from the XML data with columns empid, 

name, and designation. The SELECT query will display these records. 



 

156 

 

Example Session 

Step Hive Commands Output 

1. Creating Table CREATE TABLE XMLSAMPLE(xmldata STRING); OK 

2. Loading Data LOAD DATA LOCAL INPATH '/root/hivedemos/input.xml' 

INTO TABLE XMLSAMPLE; 

Loading data 

to table... 

3. Creating Table  CREATE TABLE xpath_table AS SELECT 

xpath_int(xmldata,'employee/empid'), 

xpath_string(xmldata,'employee/name'), 

xpath_string(xmldata,'employee/designation') FROM 

xmlsample; 

OK 

4. Selecting Data SELECT * FROM xpath_table; Resulting 

records 

4.12 User-Defined Function (UDF) in Hive 

In Hive, custom functions can be defined using User-Defined Functions (UDFs). The 

objective is to write a Hive function that converts the values of a field to uppercase. 

Act: Writing the Hive UDF 

package com.example.hive.udf; 

 

import org.apache.hadoop.hive.ql.exec.Description; 

import org.apache.hadoop.hive.ql.exec.UDF; 

 

@Description(name="SimpleUDFExample") 

public class UppercaseUDF extends UDF { 

 

    /** 

     * UDF method to convert a string to uppercase. 

     * 

     * @param str the input string 



 

157 

 

     * @return the uppercase version of the input string 

     */ 

    public String evaluate(String str) { 

        if (str == null) return null; 

        return str.toUpperCase(); 

    } 

} 

Description of the UDF 

 Package and Import: The UDF is defined within the package com.example.hive.udf. 

Necessary Hive classes are imported, including 

org.apache.hadoop.hive.ql.exec.Description and org.apache.hadoop.hive.ql.exec.UDF. 

 Annotation: The @Description annotation provides metadata about the UDF. The 

name attribute specifies the name of the UDF, which is "SimpleUDFExample" in 

this case. 

 UDF Implementation: The UppercaseUDF class extends the UDF class provided 

by Hive. It contains a single method named evaluate, which takes a string as input 

and returns its uppercase version. If the input string is null, the method returns 

null. 

Outcome 

After compiling and deploying this UDF in Hive, you can use it in Hive queries to convert 

strings to uppercase. For example: 

SELECT SimpleUDFExample('hello') AS upper_case_string; 

This would return 'HELLO' as the upper_case_string. 



 

158 

 

Lets sum up 

Hive is a data warehousing solution built on top of Hadoop, enabling efficient querying 

and analysis of large datasets using a SQL-like language known as Hive Query 

Language (HQL). Its architecture consists of components like the Metastore, Driver, 

Compiler, and Execution Engine. Hive supports a variety of data types and file formats, 

including text, ORC, and Parquet. It provides robust querying capabilities with HQL 

statements, allowing for complex operations such as joins, aggregations, and sub-

queries. Advanced data organization features like partitions and bucketing enhance 

query performance. Hive also supports views for abstracting queries, and its RCFile 

implementation improves storage efficiency. User Defined Functions (UDFs) enable 

custom operations, while serialization and deserialization mechanisms facilitate the 

handling of diverse data formats. 

 



 

159 

 

UNIT IV : SUMMARY 

 Introduction: 

o Hive is a data warehousing infrastructure built on Hadoop, designed for 

querying and managing large datasets stored in Hadoop Distributed File 

System (HDFS). 

 Architecture: 

o Components: Hive includes clients for query submission, a Hive Driver 

for query compilation and execution, a Metastore for metadata storage, 

and execution engines like MapReduce or Tez for processing queries. 

 Data Types: 

o Hive supports primitive data types (int, string, boolean, etc.) and complex 

types (array, map, struct), facilitating flexible data modeling. 

 File Formats: 

o Supports various file formats (text files, ORCFile, Parquet, RCFile) for 

efficient data storage and processing within HDFS. 

 Hive Query Language (HQL) Statements: 

o HQL is SQL-like and supports commands like SELECT, INSERT, 

UPDATE, DELETE, facilitating data querying and management in Hive. 

 Partitions: 

o Enable data organization based on one or more columns, improving query 

performance by filtering data at the partition level. 

 Bucketing: 

o Divides data into manageable parts (buckets) using a hash function, 

enhancing data retrieval efficiency in Hive queries. 

 Views: 

o Virtual tables defined by queries, allowing users to query predefined logic 

as if querying a table directly. 

 Sub-Query: 

o Supports nested queries within another query to perform complex 

operations and facilitate data analysis. 



 

160 

 

 Joins: 

o Supports various join types (INNER, LEFT OUTER, RIGHT OUTER, FULL 

OUTER) to combine data from multiple tables based on specified 

conditions. 

 Aggregations, Group by and Having: 

o Aggregation functions (SUM, AVG, COUNT) and GROUP BY for 

summarizing data, with HAVING used to filter aggregated results. 

 RCFile: 

o Columnar storage format in Hive, storing related data in columns rather 

than rows to improve query performance. 

 Implementation: 

o Involves setting up Hive components, defining tables, loading data into 

tables stored in HDFS, and executing queries using HQL. 

 Hive User Defined Function (UDF): 

o Allows users to define custom functions in various programming 

languages to process and manipulate data during query execution. 

 Serialization and Deserialization (SerDe): 

o Hive uses SerDe libraries to read and write data between HDFS and Hive 

tables in different formats, supporting data interchange and integration. 

 



 

161 

 

Glossary 

 Hive: Data warehousing infrastructure built on Hadoop for querying and 

managing large datasets stored in HDFS. 

 Hive Query Language (HQL): SQL-like language used for querying and 

managing data in Hive. 

 Partitions: Organizes data based on one or more columns to improve query 

performance by filtering data at a partition level. 

 Bucketing: Technique in Hive to divide data into manageable parts (buckets) 

based on a hash function. 

 Views: Virtual tables defined by queries in Hive, allowing users to query 

predefined logic as if querying a table directly. 

 User Defined Function (UDF): Allows users to define custom functions to 

process and manipulate data during query execution. 

 Serialization and Deserialization (SerDe): Libraries used in Hive to read and 

write data between HDFS and Hive tables in various formats. 

 File Formats: Various formats supported by Hive for data storage and 

processing, such as text files, ORCFile, Parquet, and RCFile. 



 

162 

 

Checkup Your Progress 

EXERCISE 1: Fill in each gap with the right word from the list 

1. Hive is a data warehousing infrastructure built on top of _______________ for 

querying and managing large datasets stored in Hadoop's HDFS. (Hive, HBase, 

Hadoop) 

2. Hive Query Language (HQL) is SQL-like and used for querying and managing 

data in _______________. (Hive, HBase, Hadoop) 

3. Hive supports various file formats for data storage and processing, including text 

files, ORCFile, Parquet, and _______________. (JSON, RCFile, Avro) 

4. Partitions in Hive enable data organization based on one or more columns, 

improving query performance by filtering data at the _______________ level. 

(row, column, partition) 

5. Views in Hive are virtual tables defined by a query, allowing users to query 

predefined queries as if they were _______________. (tables, views, databases) 

 

EXERCISE 2: Read the questions below and circle if the answer is True 

1. Hive is primarily designed for transactional processing and real-time data 

analytics. 

2. Hive Query Language (HQL) is SQL-like and used for querying and managing 

data in Hive. 

3. Hive supports only one file format for data storage and processing. 

4. Partitions in Hive improve query performance by filtering data at the row level. 

5. Hive User Defined Function (UDF) allows users to define custom functions to 

process and manipulate data during query execution. 

EXERCISE 3: Choose the correct answer 

 



 

163 

 

1. Hive is primarily built on top of which framework for querying and managing large 

datasets stored in Hadoop's HDFS?   

a) Hive 

b) HBase 

c) Hadoop    

2. Which language is used in Hive for querying and managing data?   

a) Java 

b) SQL 

c) Python 

3. Which of the following is a columnar storage format supported by Hive?   

a) JSON 

b) Avro 

c) RCFile 

4. What does partitioning in Hive improve?   

a) Data replication 

b) Query performance 

c) Data compression 

5. What does Hive User Defined Function (UDF) allow users to define?   

a) Custom data types 

b) Custom functions 

c) Custom tables 

 

EXERCISE 4: Match the following  

 

1. Hive Query 

Language 

(HQL) 

- A. Allows users to define custom functions to process and 

manipulate data 

 



 

164 

 

2. Partitioning - B. SQL-like language used for querying and managing data in 

Hive 

3. RCFile - C. Improves query performance by storing related data in 

columns rather than rows 

4. Hive User 

Defined 

Function (UDF) 

- D. Virtual tables defined by a query, allowing users to query 

predefined queries 

 

5. Views - E. Enables data organization based on one or more columns, 

improving query performance  

 

EXERCISE 5: Self-Assessment Questions  

1. What is the primary purpose of Hive in the Hadoop ecosystem? 

2. Name two common data types supported by Hive. 

3. How does partitioning in Hive improve query performance? 

4. Write a basic HiveQL statement to create a table. 

5. What is the difference between serialization and deserialization in the context of 

Hive? 

Answers for Checkup Your Progress 

EXERCISE 1: 

1. Hadoop 2.Hive 3.RCFile 4.Partition 5. views 

EXERCISE 2: 

1. False 2. True 3. False 4. False 5. Ture 

EXERCISE 3: 

1. c) 2. b) 3. c) 4. b) 5. b)  

EXERCISE 4: 



 

165 

 

1. B, 2.E, 3.C, 4.A, 5.D 

Open Source E-content Links: 

1. https://www.guru99.com/introduction-hive.html 

2. https://www.tutorialspoint.com/hive/hive_introduction.htm 

3. https://www.javatpoint.com/hive-architecture 

4. https://data-flair.training/blogs/hive-tutorial/ 

References: 

1. Apache Hive. (2023). Retrieved June 28, 2024, from 

https://hive.apache.org/documentation/ 

2. Capriolo, E., Wampler, D., & Rutherglen, J. (2013). Programming Hive. 

Sebastopol, CA: O'Reilly Media. 

3. White, T. (2015). Hadoop: The definitive guide (4th ed.). Sebastopol, CA: O'Reilly 

Media. 

4. Cloudera. (2023). Apache Hive Tutorial. Retrieved June 28, 2024, from 

https://docs.cloudera.com/documentation/enterprise/6/6.3/topics/hive.html 

5. Hortonworks. (2023). Apache Hive Essentials. Retrieved June 28, 2024, from 

https://docs.cloudera.com/documentation/enterprise/6/6.3/topics/hive.html 

 

 

 

 

 

 

 

 

 

 



 

166 

 

UNIT- V : PIG 

UNIT V OBJECTIVE 

The objective of this unit is to provide an in-depth understanding of Apache Pig, 

including its architecture, features, and underlying philosophy. Learners will explore the 

practical use cases for Pig, gain a thorough overview of Pig Latin, and become familiar 

with Pig's primitive and complex data types. The unit will cover how to run Pig in 

different execution modes, utilize HDFS commands, and apply relational operators and 

eval functions. Additionally, learners will learn about Piggy Bank for reusable functions, 

creating user-defined functions, parameter substitution, and using diagnostic operators. 

Practical applications, such as a word count example, will be demonstrated. The unit 

will also delve into Pig's application at Yahoo! and provide a comparative analysis of Pig 

versus Hive, equipping learners with the knowledge to leverage Pig effectively for large-

scale data processing. 

Unit Summary 

1. Introduction to Pig 

o Anatomy and Features of Pig 

o Philosophy and Use Cases for Pig 

o Overview of Pig Latin 

o Pig Primitive Data Types 

o Execution Modes of Pig 

o HDFS Commands for Pig 

o Relational Operators and Eval Functions in Pig 

o Complex Data Types and Piggy Bank 

o User-Defined Functions in Pig 

o Parameter Substitution and Diagnostic Operator 

 



 

167 

 

o Word Count Example using Pig 

o Comparison between Pig and Hive 

5.1 What is Pig? 

Apache Pig is a platform for data analysis. It is an alternative to MapReduce 

Programming. Pig was developed as a research project at Yahoo.   

5.1.1 Key Features of Pig 

1. It provides an engine for executing data flows (how your data should flow). Pig 

processes data in parallel on the Hadoop cluster.   

2. It provides a language called “Pig Latin” to express data flows.   

3. Pig Latin contains operators for many of the traditional data operations such as 

join, filter, sort, etc.   

4. It allows users to develop their own functions (User Defined Functions) for 

reading, processing, and writing data.  

5.2 The Anatomy of Pig 

The main components of Pig are as follows:   

1. Data flow language (Pig Latin).   

2. Interactive shell where you can type Pig Latin statements (Grunt).   

3. Pig interpreter and execution engine.  Refer Figure 5.1.  

 

Figure 5.1 The anatomy of Pig 

5.3 Pig on Hadoop 

Pig runs on Hadoop. Pig uses both Hadoop Distributed File System and MapReduce 

Programming. By default, Pig reads input files from HDFS. Pig stores the intermediate 

data (data produced by MapReduce jobs) and the output in HDFS. However, Pig can 

also read input from and place output to other sources.  Pig supports the following:   



 

168 

 

1. HDFS commands.   

2. UNIX shell commands.   

3. Relational operators.   

4. Positional parameters.   

5. Common mathematical functions.   

6. Custom functions.   

7. Complex data structures.  

5.4 Pig Philosophy 

Figure 5.2 describes the Pig philosophy.   

1. Pigs Eat Anything: Pig can process different kinds of data such as structured and 

unstructured data.   

2. Pigs Live Anywhere: Pig not only processes files in HDFS, it also processes files 

in other sources such as files in the local file system.   

3. Pigs are Domestic Animals: Pig allows you to develop user-defined functions and 

the same can be included in the script for complex operations.   

4. Pigs Fly: Pig processes data quickly.  

 

Figure 5.2 Pig Philosophy 

5.5 Use Case for Pig: ETL Processing 

 Pig is widely used for “ETL” (Extract, Transform, and Load). Pig can extract data from 

different sources such as ERP, Accounting, Flat Files, etc. Pig then makes use of 

various operators to perform transformation on the data and subsequently loads it into 

the data warehouse. Refer Figure 5.3.  



 

169 

 

 

Figure 5.3 Pig: ETL Processing 

5.6 Pig Latin Overview   

5.6.1 Pig Latin Statements   

1. Pig Latin statements are basic constructs to process data using Pig.   

2. Pig Latin statement is an operator.   

3. An operator in Pig Latin takes a relation as input and yields another relation as 

output.   

4. Pig Latin statements include schemas and expressions to process data.   

5. Pig Latin statements should end with a semi-colon.  

 Pig Latin Statements are generally ordered as follows:   

1. LOAD statement that reads data from the file system.   

2. Series of statements to perform transformations.   

3. DUMP or STORE to display/store result.   

The following is a simple Pig Latin script to load, filter, and store “student” data.   

A = load 'student' (rollno, name, gpa);   

A = filter A by gpa > 4.0;   

A = foreach A generate UPPER (name);   

STORE A INTO ‘myreport’   

Note: In the above example A is a relation and NOT a variable.   

5.6.2 Pig Latin: Keywords   

Keywords are reserved. It cannot be used to name things.   

5.6.3 Pig Latin: Identifiers   

1. Identifiers are names assigned to fields or other data structures.   

2. It should begin with a letter and should be followed only by letters, numbers, and 

underscores.   



 

170 

 

Figure 5.3 Pig: ETL Processing.  Data warehouse ERP Accounting Flat files Data 

validation Fixing errors  Removal  of duplicates  Encode  value  Pig jobs running on 

cluster. 

Table 5.1 describes valid and invalid identifiers.   

Table 5.1 Valid and Invalid Identifiers 

Valid Identifier Y A1 A1_2014 Sample 

Invalid Identifier 5 Sales $ Sales % _Sales 

5.6.4 Pig Latin: Comments 

In Pig Latin, two types of comments are supported: 

1. Single line comments that begin with “--”. 

2. Multiline comments that begin with “/” and end with “/”. 

5.6.5 Pig Latin: Case Sensitivity 

1. Keywords are not case-sensitive such as LOAD, STORE, GROUP, FOREACH, 

DUMP, etc. 

2. Relations and paths are case-sensitive. 

3. Function names are case-sensitive such as PigStorage, COUNT. 

5.6.6 Operators in Pig Latin 

Table 5.2 describes operators in Pig Latin. 

Table 5.2 Operators in Pig Latin 

Arithmetic Comparison Null Boolean 

+ = IS NULL AND 

- != IS NOT NULL OR 

* < 
 

NOT 



 

171 

 

/ > 
  

% <= 
  

 
>= 

  

5.7 Data Types in Pig 

5.7.1 Simple Data Types 

Table 5.3 describes simple data types supported in Pig. In Pig, fields of unspecified 

types are considered as an array of bytes, which is known as bytearray. 

Null: In Pig Latin, NULL denotes a value that is unknown or non-existent. 

5.7.2 Complex Data Types 

Table 5.4 describes complex data types in Pig. 

Table 5.3 Simple Data Types Supported in Pig 

Name Description 

Int Whole numbers 

Long Large whole numbers 

Float Decimals 

Double Very precise decimals 

Chararray Text strings 

Bytearray Raw bytes 

Datetime Datetime 

Boolean true or false 

5.8 Running Pig 

You can run Pig in two ways: 

1. Interactive Mode. 



 

172 

 

2. Batch Mode. 

5.8.1 Interactive Mode 

You can run Pig in interactive mode by invoking the grunt shell. Type pig to get the grunt 

shell as shown below. 

 

Table 5.4 Complex Data Types in Pig 

Name Description 

Tuple An ordered set of fields. Example: (2,3) 

Bag A collection of tuples. Example: {(2,3),(7,5)} 

Map key, value pair 

5.8.2 Batch Mode 

Create a "Pig Script" to run Pig in batch mode. Write Pig Latin statements in a file and 

save it with a .pig extension. 

5.9 Execution Modes of Pig 

You can execute Pig in two modes: 

1. Local Mode. 

2. MapReduce Mode. 



 

173 

 

5.9.1 Local Mode 

To run Pig in local mode, you need to have your files in the local file system. 

Syntax: 

pig –x local filename 

5.9.2 MapReduce Mode 

To run Pig in MapReduce mode, you need to have access to a Hadoop Cluster to 

read/write files. This is the default mode of Pig. 

Syntax: 

pig filename 

5.10 HDFS Commands 

It is possible to work with all HDFS commands in the Grunt shell. For example, you can 

create a directory as shown below. 

 

5.11 Relational Operators 

5.11.1 FILTER 

The FILTER operator is used to select tuples from a relation based on specified 

conditions. 

Objective: Find the tuples of those students where the GPA is greater than 4.0. 

 



 

174 

 

Input: 

Student (rollno:int, name:chararray, gpa:float) 

Action: 

A = load '/pigdemo/student.tsv' as (rollno:int, name:chararray, gpa:float); 

B = filter A by gpa > 4.0; 

DUMP B; 

5.11.2 FOREACH 

Use FOREACH when you want to do data transformation based on columns of data. 

Objective: Display the name of all students in uppercase. 

Input: 

Student (rollno:int, name:chararray, gpa:float) 

Action: 

A = load '/pigdemo/student.tsv' as (rollno:int, name:chararray, gpa:float); 

B = foreach A generate UPPER(name); 

DUMP B; 

5.11.3 GROUP 

The GROUP operator is used to group data. 

Objective: Group tuples of students based on their GPA. 

Input: 

Student (rollno:int, name:chararray, gpa:float) 



 

175 

 

Action: 

A = load '/pigdemo/student.tsv' as (rollno:int, name:chararray, gpa:float); 

B = GROUP A BY gpa; 

DUMP B; 

5.11.4 DISTINCT 

The DISTINCT operator is used to remove duplicate tuples. In Pig, the DISTINCT operator 

works on the entire tuple and NOT on individual fields. 

Objective: To remove duplicate tuples of students. 

Input: 

Student (rollno:int, name:chararray, gpa:float) 

Example Data: 

1001 John  3.0 

1002 Jack  4.0 

1003 Smith 4.5 

1004 Scott 4.2 

1005 Joshi 3.5 

1006 Alex  4.5 

1007 David 4.2 

1008 James 4.0 

1001 John  3.0 

1005 Joshi 3.5 

A = load '/pigdemo/student.tsv' as (rollno:int, name:chararray, gpa:float);   

B = DISTINCT A;   

DUMP B;  

 



 

176 

 

5.11.5 LIMIT 

The LIMIT operator is used to limit the number of output tuples. 

Objective: Display the first 3 tuples from the “student” relation. 

Input: 

Student (rollno:int, name:chararray, gpa:float) 

Action: 

A = load '/pigdemo/student.tsv' as (rollno:int, name:chararray, gpa:float); 

B = LIMIT A 3; 

DUMP B; 

5.11.6 ORDER BY 

The ORDER BY operator is used to sort a relation based on a specific value. 

Objective: Display the names of the students in ascending order. 

Input: 

Student (rollno:int, name:chararray, gpa:float) 

Action: 

A = load '/pigdemo/student.tsv' as (rollno:int, name:chararray, gpa:float); 

B = ORDER A BY name; 

DUMP B; 

5.11.7 JOIN 

The JOIN operator is used to join two or more relations based on values in the common 

field. It always performs an inner join. 



 

177 

 

Objective: To join two relations, namely, "student" and "department", based on the 

values contained in the "rollno" column. 

Input: 

Student (rollno:int, name:chararray, gpa:float) 

Department (rollno:int, deptno:int, deptname:chararray) 

Action: 

A = load '/pigdemo/student.tsv' as (rollno:int, name:chararray, gpa:float); 

B = load '/pigdemo/department.tsv' as (rollno:int, deptno:int, deptname:chararray); 

C = JOIN A BY rollno, B BY rollno; 

DUMP C; 

DUMP B; 

5.11.8 UNION 

The UNION operator is used to merge the contents of two relations. 

Objective: To merge the contents of two relations “student” and “department”. 

Input: 

Student (rollno:int, name:chararray, gpa:float) 

Department (rollno:int, deptno:int, deptname:chararray) 

Action: 

A = load '/pigdemo/student.tsv' as (rollno, name, gpa); 

B = load '/pigdemo/department.tsv' as (rollno, deptno, deptname); 

C = UNION A, B; 

STORE C INTO '/pigdemo/uniondemo'; 

DUMP B; 



 

178 

 

 

5.11.9 SPLIT  

 It is used to partition a relation into two or more relations.  

Objective: To partition a relation based on the GPAs acquired by the students. 

 If GPA = 4.0, place it into relation X. 

 If GPA is < 4.0, place it into relation Y. 

Input: 

Student (rollno:int, name:chararray, gpa:float) 

Action: 

A = load '/pigdemo/student.tsv' as (rollno:int, name:chararray, gpa:float); 

SPLIT A INTO X IF gpa == 4.0, Y IF gpa <= 4.0; 

DUMP X; 

5.11.10 SAMPLE 

It is used to select a random sample of data based on the specified sample size. 

Objective: To depict the use of SAMPLE. 

Input: 

Student (rollno:int, name:chararray, gpa:float) 

Action: 

A = load '/pigdemo/student.tsv' as (rollno:int, name:chararray, gpa:float); 

B = SAMPLE A 0.01; 

DUMP B; 



 

179 

 

5.12 Eval Function 

5.12.1 AVG: AVG is used to compute the average of numeric values in a single column 

bag. 

Objective: To calculate the average marks for each student. 

Input: 

Student (studname:chararray, marks:int) 

Action: 

A = load '/pigdemo/student.csv' USING PigStorage(',') as (studname:chararray, 

marks:int); 

B = GROUP A BY studname; 

C = FOREACH B GENERATE group AS studname, AVG(A.marks); 

DUMP C; 

5.12.2 MAX: MAX is used to compute the maximum marks for each student. 

Objective: To calculate the maximum marks for each student. 

Input: 

Student (studname:chararray, marks:int) 

Action: 

A = load '/pigdemo/student.csv' USING PigStorage(',') as (studname:chararray, 

marks:int); 

B = GROUP A BY studname; 

C = FOREACH B GENERATE group AS studname, MAX(A.marks); 

DUMP C; 



 

180 

 

5.12.3 COUNT:COUNT is used to count the number of elements in a bag. 

Objective: To count the number of tuples in a bag. 

Input: 

Student (studname:chararray, marks:int) 

Action: 

A = load '/pigdemo/student.csv' USING PigStorage(',') as (studname:chararray, 

marks:int); 

B = GROUP A BY studname; 

C = FOREACH B GENERATE group AS studname, COUNT(A); 

DUMP C; 

5.13 Complex Data Types 

5.13.1 TUPLE 

A TUPLE is an ordered collection of fields. 

Objective: To use the complex data type "Tuple" to load data. 

Input: 

(John,12) 

(Jack,13) 

(James,7) 

(Joseph,5) 

(Smith,8) 

(Scott,12) 

 

 



 

181 

 

Action: 

A = LOAD '/root/pigdemos/studentdata.tsv' AS (t1:tuple(t1a:chararray, t1b:int), 

t2:tuple(t2a:chararray, t2b:int)); 

B = FOREACH A GENERATE t1.t1a, t1.t1b, t2.$0, t2.$1; 

DUMP B; 

5.13.2 MAP 

MAP represents a key/value pair. 

Objective: To depict the complex data type "map". 

Input: 

John [city#Bangalore] 

Jack [city#Pune] 

James [city#Chennai] 

Action: 

A = load '/root/pigdemos/studentcity.tsv' Using PigStorage as (studname:chararray, 

m:map[chararray]); 

B = foreach A generate m#'city' as CityName:chararray; 

DUMP B 

5.14 Piggy Bank 

Pig users can use Piggy Bank functions in Pig Latin script, and they can also share their 

functions in Piggy Bank. 

Objective: To use Piggy Bank string UPPER function. 

Input: 



 

182 

 

Student (rollno:int, name:chararray, gpa:float) 

Action: 

register '/root/pigdemos/piggybank-0.12.0.jar'; 

A = load '/pigdemo/student.tsv' as (rollno:int, name:chararray, gpa:float); 

upper = foreach A generate org.apache.pig.piggybank.evaluation.string.UPPER(name); 

DUMP upper; 

5.15 User-Defined Functions (UDF) 

Pig allows you to create your own function for complex analysis. 

Objective: To depict a user-defined function. 

Java Code to convert name into uppercase: 

java 

Copy code 

package myudfs; 

 

import java.io.IOException; 

import org.apache.pig.EvalFunc; 

import org.apache.pig.data.Tuple; 

import org.apache.pig.impl.util.WrappedIOException; 

 

public class UPPER extends EvalFunc<String> { 

    public String exec(Tuple input) throws IOException { 

        if (input == null || input.size() == 0) 

            return null; 

        try { 

            String str = (String)input.get(0); 

            return str.toUpperCase(); 



 

183 

 

        } catch(Exception e) { 

            throw WrappedIOException.wrap("Caught exception processing input row", e); 

        } 

    } 

} 

Note: Convert the above Java class into a JAR file to include this function in your code. 

Input: 

Student (rollno:int, name:chararray, gpa:float) 

Action: 

register /root/pigdemos/myudfs.jar; 

A = load '/pigdemo/student.tsv' as (rollno:int, name:chararray, gpa:float); 

B = FOREACH A GENERATE myudfs.UPPER(name); 

DUMP B; 

5.16 Parameter Substitution 

Pig allows you to pass parameters at runtime. 

Objective: To depict parameter substitution. 

Input: 

Student (rollno:int, name:chararray, gpa:float) 

Action: 

A = load '$student' as (rollno:int, name:chararray, gpa:float); 

DUMP A; 

Execute: 



 

184 

 

pig –param student=/pigdemo/student.tsv parameterdemo.pig 

5.17 Diagnostic Operator 

It returns the schema of a relation. 

Objective: To depict the use of DESCRIBE. 

Input: 

Student (rollno:int, name:chararray, gpa:float) 

Action: 

A = load '/pigdemo/student.tsv' as (rollno:int, name:chararray, gpa:float); 

DESCRIBE A; 

5.18 Word Count Example using Pig 

Objective: To count the occurrence of similar words in a file. 

Input: 

Welcome to Hadoop Session 

Introduction to Hadoop 

Introducing Hive 

Hive Session 

Pig Session 

Action: 

lines = LOAD '/root/pigdemos/lines.txt' AS (line:chararray); 

words = FOREACH lines GENERATE FLATTEN(TOKENIZE(line)) as word; 

grouped = GROUP words BY word; 

wordcount = FOREACH grouped 



 

185 

 

Output: 

(Introduction,1) 

(Hadoop,2) 

(Hive,2) 

(Pig,1) 

(Session,2) 

(to,2) 

(Welcome,1) 

(Introducing,1) 

5.19 When to use Pig? Pig can be used in the following situations: 

1. When your data loads are time sensitive. 

2. When you want to process various data sources. 

3. When you want to get analytical insights through sampling. 

5.20 When NOT to use Pig? Pig should not be used in the following situations: 

1. When your data is completely in the unstructured form such as video, text, and 

audio. 

2. When there is a time constraint because Pig is slower than MapReduce jobs. 

5.21 Pig at Yahoo! Yahoo uses Pig for two things: 

1. In Pipelines, to fetch log data from its web servers and to perform cleansing to 

remove interval views and clicks. 

2. In Research, script is used to test a theory. Pig provides a facility to integrate Perl 

or Python script which can be executed on a huge dataset. 

 

 



 

186 

 

5.22 Pig versus Hive Features 

Features Pig Hive 

Used By Programmers and Researchers Analyst 

Used For Programming Reporting 

Language Procedural data flow language SQL Like 

Suitable For Semi-Structured Structured 

Schema/Types Explicit Implicit 

UDF Support YES YES 

Join/Order/Sort YES YES 

DFS Direct Access YES (Implicit) YES (Explicit) 

Web Interface YES NO 

Partitions YES NO 

Shell YES YES 

This table provides a comparison between Pig and Hive based on the features such as 

usage, language, suitability, schema/types, support for UDFs, operations like 

join/order/sort, direct access to distributed file system (DFS), availability of web 

interface, support for partitions, and shell interface. 

Lets sum up 

 

Pig is a high-level platform for processing large datasets in Hadoop, known for its 

scripting language Pig Latin. Pig's architecture includes components like the Pig Latin 

interpreter and execution environment, and it boasts features such as simplicity, 

extensibility, and ease of use. The philosophy of Pig centers on handling semi-

structured data and performing data transformations, with use cases spanning ETL 

processes and data analysis. Pig Latin provides a rich set of primitive data types and 

supports complex data types. It operates in local and MapReduce modes and utilizes 

HDFS commands. Pig includes relational operators and eval functions for data 

manipulation, and the Piggy Bank library extends functionality with user-defined 



 

187 

 

functions (UDFs). Parameter substitution and diagnostic operators enhance script 

flexibility and debugging. A classic example of Pig's application is the word count 

problem. Compared to Hive, Pig is more procedural, offering a different approach to big 

data processing and analysis. 

 



 

188 

 

UNIT V : SUMMARY 

 Introduction: 

o Pig is a high-level scripting language used for analyzing large datasets. 

o It simplifies complex data transformations and processing on Hadoop. 

 Anatomy: 

o Pig scripts consist of operations represented as data flow sequences. 

o Scripts are executed using Pig Latin, a data flow language. 

 Features: 

o Supports complex data types and operations like filtering, grouping, and 

joining datasets. 

o Provides extensibility through User-Defined Functions (UDFs) and 

libraries like Piggy Bank. 

 Philosophy: 

o Designed for ease of use, productivity, and extensibility in data processing 

tasks. 

o Focuses on data flow and transformation rather than low-level 

programming. 

 Use Case for Pig: 

o Ideal for ETL (Extract, Transform, Load) processes, data pipelines, and 

ad-hoc data exploration tasks. 

 Pig Latin Overview: 

o Declarative language similar to SQL but tailored for Hadoop environments. 

o Allows users to specify data transformations using operations like LOAD, 

FILTER, GROUP, and STORE. 

 Pig Primitive Data Types: 

o Includes basic types such as int, long, float, double, chararray, bytearray, 

and boolean. 

 Running Pig: 



 

189 

 

o Pig scripts are executed using the Pig Latin interpreter, which compiles 

scripts into MapReduce jobs. 

 Execution Modes of Pig: 

o Supports local mode for testing and MapReduce mode for distributed 

execution on Hadoop clusters. 

 HDFS Commands: 

o Pig interacts with HDFS (Hadoop Distributed File System) for data storage 

and retrieval. 

 Relational Operators: 

o Includes operators like JOIN, FILTER, DISTINCT, ORDER BY, and 

FOREACH for data manipulation. 

 Eval Function: 

o Used in Pig Latin to apply expressions and functions to data fields. 

 Complex Data Types: 

o Supports tuples, bags (unordered collections), and maps for handling 

nested and complex data structures. 

 Piggy Bank: 

o Library of reusable Pig scripts and UDFs contributed by the community. 

 User-Defined Functions (UDFs): 

o Custom functions written in Java or other languages to extend Pig's 

functionality. 

 Parameter Substitution: 

o Allows users to parameterize Pig scripts for flexibility and reuse. 

 Diagnostic Operator: 

o Used for debugging by displaying intermediate results during script 

execution. 

 Word Count Example using Pig: 

o Classic example demonstrating Pig's capability to count words in a dataset 

using simple operations. 

 Pig at Yahoo!: 



 

190 

 

o Yahoo! extensively used Pig for various data processing tasks, 

showcasing its scalability and effectiveness. 

 Pig Versus Hive: 

o Comparison between Pig and Hive, highlighting differences in their query 

languages, data processing paradigms, and use cases. 



 

191 

 

Glossary 

 Apache Pig: A platform for analyzing large data sets that provides a high-level 

language called Pig Latin for expressing data analysis programs, which are 

compiled into sequences of MapReduce programs, reducing the complexities of 

writing raw MapReduce code. 

 Pig Latin: A high-level scripting language used with Apache Pig that allows 

users to write complex data transformations without having to use Java. Pig Latin 

includes many operators for data operations like join, filter, and sort. 

 Grunt: The interactive shell for running Pig scripts and commands. It allows 

users to enter Pig Latin statements and immediately see the results. 

 Pig Primitive Data Types: Basic data types in Pig Latin including int, long, float, 

double, chararray (string), and bytearray (binary data). 

 Pig Complex Data Types: Data types that can hold multiple values or nested 

values, such as tuple, bag, and map. 

 Relational Operators: Operators in Pig Latin used to manipulate and transform 

data. Examples include LOAD, STORE, FILTER, FOREACH, JOIN, GROUP, and ORDER 

BY. 

 Eval Functions: Functions in Pig Latin used to perform operations on data fields, 

such as mathematical computations or string manipulations. 

 Piggy Bank: A collection of user-contributed functions for Pig that extend its 

capabilities with additional data processing operations not included in the core 

Pig distribution. 

 User-Defined Functions (UDFs): Custom functions written by users in Java, 

Python, or other supported languages to extend Pig's functionality by adding new 

operations or transformations. 

 Parameter Substitution: A feature in Pig that allows users to pass parameters 

to Pig scripts at runtime, enabling dynamic script configuration. 

 Diagnostic Operators: Tools in Pig used for debugging and troubleshooting Pig 

scripts, such as DESCRIBE, EXPLAIN, and ILLUSTRATE. 



 

192 

 

 ETL (Extract, Transform, Load): A common use case for Pig, involving the 

extraction of data from various sources, transformation of the data using Pig 

operations, and loading the processed data into a data warehouse or other 

storage systems. 



 

193 

 

Checkup Your Progress 

EXERCISE 1: Fill in each gap with the right word from the list 

1. Pig is a high-level scripting language used for analyzing large datasets on 

_______________ (Hadoop, Spark, MongoDB). 

2. Pig scripts are executed using _______________ (Pig Latin, SQL, Java), a data 

flow language. 

3. Pig supports complex data types such as tuples, bags, and _______________ 

(arrays, maps, sets). 

4. Pig scripts can be run in _______________ (local mode, standalone mode, 

cluster mode) for testing purposes. 

5. Pig provides a variety of relational operators such as _______________ (JOIN, 

UPDATE, DELETE) for data manipulation. 

EXERCISE 2: Read the questions below and circle if the answer is True 

1. Pig is a low-level programming language used for analyzing large datasets - 

True/False 

2. Pig Latin is a procedural language used to define data flows in Pig scripts - 

True/False 

3. Pig supports only primitive data types such as int, float, and string - True/False 

4. Pig scripts can be executed in local mode for testing and debugging purposes - 

True/False 

5. Piggy Bank is a library of reusable Pig scripts and User-Defined Functions 

(UDFs) contributed by the community - True/False 

EXERCISE 3: Choose the correct answer 

1. Which of the following is true about Pig? 

a) It is a low-level programming language. 

b) It is used for real-time data processing. 



 

194 

 

c) It simplifies complex data transformations on Hadoop. 

2. Pig scripts are written in which language? 

a) Pig Latin 

b) Java 

c) SQL 

3. Which data types does Pig support? 

a) Only primitive data types 

b) Primitive and complex data types 

c) Only complex data types 

4. What mode can Pig scripts be executed in for testing purposes? 

a) Standalone mode 

b) Cluster mode 

c) Local mode 

5. What is Piggy Bank? 

a) A data repository in Pig 

b) A visualization tool for Pig scripts 

c) A library of reusable scripts and User-Defined Functions (UDFs) 

 

EXERCISE 4: Match the following  

 

1. Pig Latin - A. Allows users to extend Pig's functionality by defining 

custom operations 

 

2. Execution - B. Library of reusable Pig scripts and functions contributed by 



 

195 

 

Modes of Pig the community 

3. Piggy Bank - C. Language used to define data flows and transformations in 

Pig scripts 

4. User-Defined 

Functions 

(UDFs) 

- D. Allows for dynamic values to be used in Pig scripts 

5. Parameter 

Substitution 

- E. Defines how Pig scripts are run, such as local mode or 

cluster mode 

 

EXERCISE 5: Self-Assessment Questions  

1. What is the main purpose of Apache Pig in the Hadoop ecosystem? 

2. Name two primitive data types in Pig. 

3. Describe one use case where Pig is particularly advantageous. 

4. What are the two execution modes of Pig, and what is the main difference 

between them? 

5. Write a simple Pig Latin script to load data from an HDFS file. 

Answers for Checkup Your Progress 

EXERCISE 1: 

1. Hadoop, 2. Pig Latin 3. Maps, 4. local mode, 5. JOIN 

EXERCISE 2: 

1. False 2. False 3. False 4. True 5. Ture 

EXERCISE 3: 

1. c) 2. a) 3. b) 4. c) 5. c)  

EXERCISE 4: 



 

196 

 

1. C, 2.E, 3.B, 4.A, 5.D. 

Open Source E-content Links: 

1. https://www.geeksforgeeks.org/introduction-to-apache-pig/ 

2. https://www.tutorialspoint.com/apache_pig/index.htm 

3. https://data-flair.training/blogs/hadoop-pig-tutorial/ 

4. https://www.javatpoint.com/pig-example 

References: 

1. Gates, A., & Natkovich, O. (2017). Apache Pig: The definitive guide. Sebastopol, 

CA: O'Reilly Media. 

2. Apache Pig. (2023). Retrieved June 28, 2024, from 

https://pig.apache.org/docs/latest/ 

3. Sankar, K., & Gates, A. (2015). Learning Apache Pig. Birmingham, UK: Packt 

Publishing. 

4. Hortonworks. (2023). Apache Pig Tutorial. Retrieved June 28, 2024, from 

https://docs.cloudera.com/documentation/enterprise/6/6.3/topics/pig.html 

5. Cloudera. (2023). Apache Pig Tutorial. Retrieved June 28, 2024, from 

https://docs.cloudera.com/documentation/enterprise/6/6.3/topics/pig.html 

 



 

197 

 

Unit-wise Assignments 

 

The following assignments are designed to help students grasp key concepts and apply 

their knowledge practically. 

Unit 1: Big Data and Analytics 

Assignment 1: Understanding Data Types 

 Objective: To understand the differences between structured, semi-structured, 

and unstructured data. 

 Task: 

o Collect samples of structured, semi-structured, and unstructured data 

(e.g., a relational database table, an XML/JSON file, and a collection of 

tweets). 

o Write a report explaining the characteristics of each type of data, including 

its structure and use cases. 

Assignment 2: Evolution and Challenges of Big Data 

 Objective: To explore the history and challenges of Big Data. 

 Task: 

o Research the evolution of Big Data technologies. 

o Write an essay detailing key milestones in the development of Big Data, 

major technological advancements, and the challenges faced in managing 

and processing Big Data. 

Assignment 3: Big Data vs. Traditional Business Intelligence 

 Objective: To compare Big Data analytics with traditional business intelligence. 

 Task: 



 

198 

 

o Create a comparison chart that highlights the differences between Big 

Data analytics and traditional BI in terms of data volume, variety, velocity, 

and tools used. 

o Provide case studies or examples where Big Data analytics provided 

better insights compared to traditional BI. 

Assignment 4: Big Data Analytics Tools 

 Objective: To familiarize with popular Big Data analytics tools. 

 Task: 

o Choose three popular Big Data tools (e.g., Hadoop, Spark, Flink). 

o Write a report comparing their features, strengths, and weaknesses, and 

suggest scenarios where each tool is most effective. 

Assignment 5: Data Governance and Quality in Big Data 

 Objective: To understand the importance of data quality and governance. 

 Task: 

o Research and write a paper on the best practices for ensuring data quality 

and implementing data governance in Big Data environments. 

o Include examples of companies that have successfully implemented these 

practices. 

 

Unit 2: Technology Landscape 

Assignment 1: NoSQL Databases 

 Objective: To explore the world of NoSQL databases. 

 Task: 

o Choose two NoSQL databases (e.g., MongoDB, Cassandra) and compare 

their data models, query languages, and use cases. 



 

199 

 

o Implement a simple project using one of the NoSQL databases to store 

and retrieve data. 

Assignment 2: Hadoop Ecosystem 

 Objective: To understand the components of the Hadoop ecosystem. 

 Task: 

o Create a detailed diagram of the Hadoop ecosystem, including HDFS, 

MapReduce, YARN, and other related tools. 

o Write a report explaining the function of each component and how they 

interact with each other. 

Assignment 3: Distributed Computing Challenges 

 Objective: To comprehend the challenges in distributed computing and how 

Hadoop addresses them. 

 Task: 

o Write an essay on the challenges of distributed computing (e.g., data 

consistency, fault tolerance, scalability). 

o Explain how Hadoop’s architecture addresses these challenges. 

Assignment 4: HDFS Deep Dive 

 Objective: To understand the Hadoop Distributed File System. 

 Task: 

o Write a detailed report on HDFS architecture, including block storage, 

replication, and fault tolerance mechanisms. 

o Include a case study of a company using HDFS to handle large-scale data 

storage. 

Assignment 5: Comparing SQL and NoSQL 

 Objective: To compare traditional SQL databases with NoSQL databases. 



 

200 

 

 Task: 

o Create a comparison matrix that outlines the differences between SQL 

and NoSQL databases in terms of scalability, flexibility, consistency, and 

performance. 

o Provide examples of scenarios where NoSQL databases are preferred 

over SQL databases and vice versa. 

 

Unit 3: MongoDB and MapReduce Programming 

Assignment 1: MongoDB Schema Design 

 Objective: To design a flexible schema using MongoDB. 

 Task: 

o Choose a real-world scenario (e.g., e-commerce, social media). 

o Design a MongoDB schema for this scenario, including collections and 

sample documents. 

o Explain your design choices in a written report. 

Assignment 2: Implementing CRUD Operations in MongoDB 

 Objective: To practice basic operations in MongoDB. 

 Task: 

o Create a MongoDB database and perform CRUD (Create, Read, Update, 

Delete) operations using the MongoDB shell or a programming language 

of your choice. 

o Document each operation with code snippets and explanations. 

Assignment 3: MapReduce Job Implementation 

 Objective: To implement a MapReduce job. 

 Task: 



 

201 

 

o Write a MapReduce program to analyze a large dataset (e.g., word count, 

log file analysis). 

o Execute the program on a Hadoop cluster or a local setup and document 

the process and results. 

Assignment 4: Aggregation Framework in MongoDB 

 Objective: To use MongoDB’s aggregation framework. 

 Task: 

o Create an aggregation pipeline to perform complex data analysis on a 

sample dataset. 

o Write a report explaining each stage of the pipeline and the results 

obtained. 

Assignment 5: Comparing MongoDB with Traditional RDBMS 

 Objective: To compare MongoDB with traditional relational databases. 

 Task: 

o Write an essay comparing MongoDB with a traditional RDBMS (e.g., 

MySQL) in terms of schema design, scalability, performance, and use 

cases. 

o Include a section on the advantages and disadvantages of each approach. 

 

Unit 4: Hive 

Assignment 1: Hive Architecture Analysis 

 Objective: To understand the architecture of Hive. 

 Task: 

o Write a detailed report on the components of Hive’s architecture, including 

the metastore, query processor, and execution engine. 



 

202 

 

o Explain how Hive translates SQL-like queries into MapReduce jobs. 

Assignment 2: Creating and Querying Hive Tables 

 Objective: To practice creating and querying Hive tables. 

 Task: 

o Create Hive tables using different data types and file formats. 

o Write and execute Hive queries to perform basic data analysis tasks (e.g., 

filtering, grouping, joining). 

o Document the process and results. 

Assignment 3: Hive Partitioning and Bucketing 

 Objective: To implement partitioning and bucketing in Hive. 

 Task: 

o Create a partitioned and bucketed Hive table based on a sample dataset. 

o Write queries to analyze the data and compare the performance with non-

partitioned/bucketed tables. 

Assignment 4: Implementing UDFs in Hive 

 Objective: To extend Hive’s functionality using user-defined functions (UDFs). 

 Task: 

o Write a custom UDF in Java or Python to perform a specific data 

transformation. 

o Register and use the UDF in Hive queries. 

o Document the implementation and usage. 

Assignment 5: Optimization Techniques in Hive 

 Objective: To optimize Hive queries for performance. 

 Task: 



 

203 

 

o Research and implement various Hive query optimization techniques (e.g., 

indexing, query rewriting, join optimization). 

o Write a report detailing the techniques used and their impact on query 

performance. 

Unit 5: Pig 

Assignment 1: Introduction to Pig Latin 

 Objective: To learn the basics of Pig Latin scripting language. 

 Task: 

o Write a Pig Latin script to load, process, and store a sample dataset. 

o Document each step of the script and explain the operations performed. 

Assignment 2: Relational Operators in Pig 

 Objective: To use relational operators in Pig. 

 Task: 

o Write a Pig script to perform common relational operations (e.g., join, filter, 

group, order) on a sample dataset. 

o Explain the purpose and output of each operation. 

Assignment 3: User-Defined Functions in Pig 

 Objective: To create and use UDFs in Pig. 

 Task: 

o Implement a UDF in Java or Python to perform a specific data processing 

task. 

o Integrate the UDF into a Pig script and demonstrate its usage. 

o Document the implementation and results. 

 



 

204 

 

Assignment 4: Diagnostic Operators in Pig 

 Objective: To use diagnostic operators for debugging Pig scripts. 

 Task: 

o Write a Pig script that includes diagnostic operators (e.g., DESCRIBE, 

ILLUSTRATE, EXPLAIN). 

o Use these operators to analyze the script’s execution plan and 

intermediate results. 

o Document the findings and any optimizations made based on the 

diagnostics. 

Assignment 5: Complex Data Types in Pig 

 Objective: To work with complex data types in Pig. 

 Task: 

o Write a Pig script that uses complex data types (e.g., tuples, bags, maps) 

to process a sample dataset. 

o Explain the data types used and their advantages in the script. 

o Document the script and results. 

 



 

205 

 

Question Bank 

Multiple Choice Questions 

Unit 1: Big Data and Analytics 

1. Which of the following is an example of structured data? 

o A. Audio file 

o B. XML file 

o C. SQL database 

o D. Social media post 

2. What characteristic of Big Data refers to the variety of data types and 

sources? 

o A. Volume 

o B. Velocity 

o C. Variety 

o D. Veracity 

3. Which of the following is a challenge associated with Big Data? 

o A. High storage cost 

o B. Data integration 

o C. Lack of volume 

o D. Simple analysis tools 

4. What does 'Velocity' in Big Data refer to? 

o A. The size of the data 

o B. The speed at which data is generated 

o C. The types of data 

o D. The accuracy of the data 

5. What is the main difference between traditional business intelligence and 

Big Data? 

o A. BI handles structured data, Big Data handles unstructured data 

o B. BI is faster than Big Data 

o C. BI uses more advanced analytics than Big Data 



 

206 

 

o D. BI is less scalable than Big Data 

6. Which of the following describes a data warehouse? 

o A. A system that processes real-time data streams 

o B. A system for storing large amounts of structured data 

o C. A system that stores unstructured data 

o D. A system that provides in-memory data processing 

7. What is Hadoop primarily used for? 

o A. Data mining 

o B. Data warehousing 

o C. Distributed storage and processing 

o D. Real-time analytics 

8. What is the role of a Data Scientist? 

o A. To manage databases 

o B. To perform advanced analytics on data 

o C. To develop software 

o D. To ensure data security 

9. Which of the following is a common characteristic of Big Data? 

o A. High accuracy 

o B. Low cost 

o C. High volume 

o D. Low velocity 

10. What does 'Veracity' refer to in the context of Big Data? 

o A. Data speed 

o B. Data variety 

o C. Data accuracy and trustworthiness 

o D. Data size 

11. Which model ensures availability and eventual consistency in Big Data 

systems? 

o A. ACID 

o B. BASE 

o C. CAP 



 

207 

 

o D. RDBMS 

12. Which of the following is NOT a Big Data analytics tool? 

o A. Hadoop 

o B. Excel 

o C. Spark 

o D. Flink 

13. What is the primary purpose of Big Data analytics? 

o A. To replace traditional databases 

o B. To analyze large and complex data sets 

o C. To store large volumes of data 

o D. To perform simple data operations 

14. In Big Data, what does the '3 Vs' model refer to? 

o A. Volume, Variety, Velocity 

o B. Volume, Veracity, Velocity 

o C. Volume, Variety, Value 

o D. Volume, Value, Velocity 

15. Which term is used to describe the integration and analysis of large data 

sets? 

o A. Data mining 

o B. Data warehousing 

o C. Big Data analytics 

o D. Business intelligence 

16. What does 'Scalability' mean in the context of Big Data? 

o A. The ability to handle increasing data volume 

o B. The ability to analyze data in real-time 

o C. The ability to maintain data accuracy 

o D. The ability to integrate multiple data sources 

17. Which of the following is an example of unstructured data? 

o A. A relational database table 

o B. A CSV file 

o C. A video file 



 

208 

 

o D. A JSON document 

18. What is the Hadoop Distributed File System (HDFS) designed for? 

o A. In-memory data processing 

o B. Real-time data analysis 

o C. Distributed data storage 

o D. Data visualization 

19. Which of the following best describes 'Data Science'? 

o A. The study of managing databases 

o B. The study of algorithms and statistics to gain insights from data 

o C. The development of software applications 

o D. The management of IT infrastructure 

20. What is the main benefit of using Hadoop for Big Data processing? 

o A. Low cost 

o B. High performance 

o C. Scalability and fault tolerance 

o D. User-friendly interface 

Unit 2: Technology Landscape 

1. What does NoSQL stand for? 

o A. Not Only SQL 

o B. New SQL 

o C. No Standard Query Language 

o D. Network SQL 

2. Which type of database is designed to handle large volumes of 

unstructured data? 

o A. RDBMS 

o B. NoSQL 

o C. OLAP 

o D. OLTP 

3. What is a key difference between SQL and NoSQL databases? 



 

209 

 

o A. SQL databases are schema-less 

o B. NoSQL databases are schema-less 

o C. SQL databases are designed for scalability 

o D. NoSQL databases do not support transactions 

4. Which component of Hadoop is responsible for resource management? 

o A. HDFS 

o B. MapReduce 

o C. YARN 

o D. Hive 

5. Which of the following is NOT a challenge of distributed computing? 

o A. Fault tolerance 

o B. Network latency 

o C. Centralized control 

o D. Data locality 

6. What is the main function of the Hadoop Distributed File System (HDFS)? 

o A. To process large datasets 

o B. To manage cluster resources 

o C. To store large datasets across multiple nodes 

o D. To run SQL queries on large datasets 

7. Which Hadoop component is used for processing data in a distributed 

environment? 

o A. HDFS 

o B. YARN 

o C. MapReduce 

o D. Oozie 

8. What does YARN stand for? 

o A. Yet Another Resource Negotiator 

o B. Yet Another Random Number 

o C. Your Another Resource Network 

o D. Your Another Random Negotiator 



 

210 

 

9. Which of the following is an advantage of NoSQL databases over 

traditional RDBMS? 

o A. Better performance for complex queries 

o B. Better support for unstructured data 

o C. Stronger ACID compliance 

o D. More rigid schema design 

10. What is a common use case for NoSQL databases? 

o A. Transactional applications 

o B. Analytical processing 

o C. Handling large volumes of unstructured data 

o D. Simple data retrieval 

11. Which feature is a hallmark of NoSQL databases? 

o A. Fixed schema 

o B. Support for joins 

o C. Horizontal scalability 

o D. Strong ACID properties 

12. What is the primary purpose of Hadoop MapReduce? 

o A. To store data in a distributed manner 

o B. To provide a programming model for processing large datasets 

o C. To manage cluster resources 

o D. To provide a user interface for Hadoop 

13. Which Hadoop component allows for running different types of distributed 

applications beyond MapReduce? 

o A. HDFS 

o B. YARN 

o C. Hive 

o D. Pig 

14. Which SQL feature is typically not supported in NoSQL databases? 

o A. Basic CRUD operations 

o B. ACID transactions 

o C. Indexing 



 

211 

 

o D. High availability 

15. What is the key benefit of using Hadoop for Big Data analytics? 

o A. Cost efficiency 

o B. Real-time processing 

o C. Scalability and fault tolerance 

o D. Ease of use 

16. Which term describes the capability to expand storage and processing 

capacity by adding more nodes to a Hadoop cluster? 

o A. Scalability 

o B. Elasticity 

o C. Reliability 

o D. Availability 

17. Which of the following is a NoSQL database? 

o A. MySQL 

o B. PostgreSQL 

o C. MongoDB 

o D. Oracle 

18. In Hadoop, what is the role of the NameNode? 

o A. To store data blocks 

o B. To manage metadata and file system namespace 

o C. To execute MapReduce jobs 

o D. To provide a user interface 

19. Which statement about Hadoop YARN is true? 

o A. It is a storage component 

o B. It allows multiple data processing engines to run on the same cluster 

o C. It replaces HDFS 

o D. It only supports MapReduce 

20. What type of data processing is Hadoop MapReduce best suited for? 

o A. Real-time data processing 

o B. Batch processing of large datasets 

o C. Small-scale data processing 



 

212 

 

o D. In-memory processing 

Unit 3: MongoDB and MapReduce Programming 

1. Which of the following is a primary feature of MongoDB? 

o A. Relational tables 

o B. Schema-less data model 

o C. ACID transactions 

o D. Fixed schema 

2. In MongoDB, a document is analogous to what structure in an RDBMS? 

o A. Table 

o B. Row 

o C. Column 

o D. Index 

3. Which command in MongoDB is used to insert a document into a 

collection? 

o A. add() 

o B. insert() 

o C. create() 

o D. put() 

4. Which data type is NOT supported by MongoDB? 

o A. String 

o B. Integer 

o C. Binary 

o D. Boolean 

5. What is the role of a Mapper in a MapReduce job? 

o A. To combine results 

o B. To partition data 

o C. To process input data and produce key-value pairs 

o D. To aggregate data 

6. What function does a Reducer perform in a MapReduce job? 



 

213 

 

o A. Sorts the input data 

o B. Processes intermediate key-value pairs to produce final output 

o C. Partitions the data 

o D. Combines the output of mappers 

7. In MapReduce, what is the purpose of a Combiner? 

o A. To partition the data 

o B. To perform local aggregation of intermediate outputs 

o C. To distribute the data evenly across reducers 

o D. To handle data compression 

8. Which of the following is NOT a term used in MongoDB? 

o A. Collection 

o B. Document 

o C. Table 

o D. Field 

9. What is the default storage format for MongoDB data? 

o A. CSV 

o B. JSON 

o C. BSON 

o D. XML 

10. In MongoDB, which operator is used to query documents that match a 

specified condition? 

o A. $match 

o B. $query 

o C. $find 

o D. $select 

11. Which phase in the MapReduce process sorts and shuffles the 

intermediate data? 

o A. Map 

o B. Reduce 

o C. Combine 

o D. Shuffle and Sort 



 

214 

 

12. Which of the following is a built-in data type in MongoDB? 

o A. Date 

o B. Currency 

o C. Complex 

o D. Matrix 

13. What is a key advantage of using MongoDB over traditional RDBMS? 

o A. Support for complex joins 

o B. Flexible schema design 

o C. Strong ACID properties 

o D. Centralized architecture 

14. What is a Partitioner in MapReduce used for? 

o A. To map input data 

o B. To reduce intermediate outputs 

o C. To determine how the data is split among reducers 

o D. To combine map outputs 

15. Which of the following commands is used to update a document in 

MongoDB? 

o A. modify() 

o B. update() 

o C. change() 

o D. replace() 

16. In MapReduce, what does the term 'shuffle' refer to? 

o A. Moving input data to the mappers 

o B. Distributing intermediate data to reducers 

o C. Sorting the final output 

o D. Aggregating the map outputs 

17. Which command in MongoDB is used to delete a document? 

o A. remove() 

o B. delete() 

o C. drop() 

o D. erase() 



 

215 

 

18. In MongoDB, what is a 'Collection'? 

o A. A set of databases 

o B. A set of documents 

o C. A set of tables 

o D. A set of fields 

19. What is the main purpose of using a Combiner in MapReduce? 

o A. To reduce the amount of data transferred to the reducer 

o B. To combine the final outputs 

o C. To partition the data 

o D. To perform initial data mapping 

20. Which MongoDB data type is used to store binary data? 

o A. Blob 

o B. ByteArray 

o C. Binary 

o D. Buffer 

Unit 4: Hive 

1. Which of the following is a supported data type in Hive? 

o A. Integer 

o B. Float 

o C. String 

o D. All of the above 

2. Which file format is known for its high performance in Hive? 

o A. TextFile 

o B. ORC 

o C. JSON 

o D. CSV 

3. What does HQL stand for in the context of Hive? 

o A. Hive Query Language 

o B. Hadoop Query Language 



 

216 

 

o C. High-Level Query Language 

o D. None of the above 

4. Which Hive feature allows dividing data into more manageable parts? 

o A. Bucketing 

o B. Indexing 

o C. Partitioning 

o D. Clustering 

5. Which statement is used to create a table in Hive? 

o A. INSERT 

o B. SELECT 

o C. CREATE 

o D. ALTER 

6. What is the purpose of the RCFile format in Hive? 

o A. To provide a columnar storage format 

o B. To store data in a row-wise fashion 

o C. To compress data 

o D. To improve network performance 

7. In Hive, what is a UDF? 

o A. User-Defined Function 

o B. Unified Data Framework 

o C. Universal Data Function 

o D. Unique Data File 

8. Which Hive data type is used to store date and time information? 

o A. DATE 

o B. TIMESTAMP 

o C. DATETIME 

o D. TIME 

9. Which of the following is NOT a complex data type in Hive? 

o A. ARRAY 

o B. MAP 

o C. STRUCT 



 

217 

 

o D. STRING 

10. What is the main advantage of using partitions in Hive? 

o A. To compress data 

o B. To reduce the size of data 

o C. To improve query performance 

o D. To replicate data 

11. What is bucketing in Hive used for? 

o A. To divide data into equal parts based on hash functions 

o B. To partition data 

o C. To create indexes 

o D. To compress data 

12. Which keyword is used to create a view in Hive? 

o A. CREATE TABLE 

o B. CREATE VIEW 

o C. CREATE INDEX 

o D. CREATE PARTITION 

13. In Hive, which file format supports columnar storage? 

o A. TextFile 

o B. SequenceFile 

o C. ORC 

o D. JSON 

14. What does SerDe stand for in Hive? 

o A. Serialization and Deserialization 

o B. Server Data Engine 

o C. Service Data Execution 

o D. Serialized Data Entity 

15. Which of the following is a valid Hive complex data type? 

o A. INT 

o B. FLOAT 

o C. STRING 

o D. MAP 



 

218 

 

16. Which clause is used to group rows that have the same values in specified 

columns in Hive? 

o A. GROUP BY 

o B. ORDER BY 

o C. HAVING 

o D. PARTITION BY 

17. What is the function of the HAVING clause in Hive? 

o A. To filter records after grouping 

o B. To sort the results 

o C. To join tables 

o D. To partition data 

18. Which statement is used to delete a table in Hive? 

o A. DROP TABLE 

o B. DELETE TABLE 

o C. REMOVE TABLE 

o D. ERASE TABLE 

19. What is the purpose of using views in Hive? 

o A. To store data 

o B. To create a virtual table 

o C. To perform data compression 

o D. To manage user access 

20. Which of the following is NOT a join type in Hive? 

o A. INNER JOIN 

o B. LEFT JOIN 

o C. CROSS JOIN 

o D. VERTICAL JOIN 

Unit 5: Pig 

1. What is Pig Latin? 

o A. A high-level language for data processing 



 

219 

 

o B. A Latin dialect 

o C. A scripting language for web development 

o D. A database query language 

2. Which of the following is NOT a feature of Apache Pig? 

o A. Ease of programming 

o B. Optimization opportunities 

o C. High-level abstraction 

o D. Real-time processing 

3. What is the primary use case for Apache Pig? 

o A. Real-time analytics 

o B. Batch processing of large datasets 

o C. Transactional processing 

o D. In-memory computing 

4. What does the Pig execution mode 'Local' refer to? 

o A. Running Pig on a Hadoop cluster 

o B. Running Pig on a single machine 

o C. Running Pig in the cloud 

o D. Running Pig in a virtual environment 

5. Which operator in Pig is used to load data from a file? 

o A. LOAD 

o B. STORE 

o C. SELECT 

o D. FETCH 

6. What does 'Piggy Bank' refer to in Apache Pig? 

o A. A built-in data type 

o B. A user-defined function library 

o C. A storage format 

o D. A debugging tool 

7. Which command is used to run a Pig script in MapReduce mode? 

o A. pig -x local script.pig 

o B. pig -x mapreduce script.pig 



 

220 

 

o C. pig -mode mapreduce script.pig 

o D. pig -mode local script.pig 

8. What are the two main data types in Pig? 

o A. Primitives and Complex 

o B. Simple and Compound 

o C. Basic and Advanced 

o D. Scalar and Vector 

9. In Pig, which operator is used to group data? 

o A. GROUP 

o B. JOIN 

o C. UNION 

o D. FILTER 

10. Which of the following is NOT a relational operator in Pig? 

o A. LOAD 

o B. STORE 

o C. SELECT 

o D. GROUP 

11. What is the purpose of the 'FOREACH' statement in Pig? 

o A. To iterate over each element in a dataset 

o B. To join two datasets 

o C. To filter data 

o D. To load data 

12. Which execution mode in Pig is used for development and testing on a 

local machine? 

o A. MapReduce mode 

o B. Local mode 

o C. Cluster mode 

o D. Distributed mode 

13. What does 'Eval function' in Pig refer to? 

o A. Evaluation functions that operate on data fields 

o B. Execution functions for running scripts 



 

221 

 

o C. Error-checking functions 

o D. Event-handling functions 

14. Which Pig data type is used to represent a collection of tuples? 

o A. Bag 

o B. List 

o C. Array 

o D. Map 

15. What is the role of 'UDF' in Pig? 

o A. To define custom processing logic 

o B. To load data from external sources 

o C. To store processed data 

o D. To optimize query performance 

16. Which command in Pig is used to store the result into a file? 

o A. LOAD 

o B. STORE 

o C. SAVE 

o D. OUTPUT 

17. In Pig, what does the 'DIFF' operator do? 

o A. Computes the difference between two datasets 

o B. Finds the common elements in two datasets 

o C. Filters out duplicate records 

o D. Joins two datasets 

18. Which diagnostic operator is used to display data in Pig? 

o A. DESCRIBE 

o B. ILLUSTRATE 

o C. EXPLAIN 

o D. PRINT 

19. What is a common use case for Pig at Yahoo!? 

o A. Real-time user data analysis 

o B. Log processing and data analysis 

o C. In-memory computation 



 

222 

 

o D. Small-scale data processing 

20. What is a key difference between Pig and Hive? 

o A. Pig is used for real-time processing, Hive for batch processing 

o B. Pig uses a procedural language, Hive uses a declarative language 

o C. Pig is a storage system, Hive is a processing engine 

o D. Pig supports SQL, Hive does not 

Answers 

Unit 1: Big Data and Analytics 

1. A. Data stored in a fixed format 

2. C. Versatility 

3. B. High storage costs 

4. B. A system for reporting and data analysis 

5. D. Slow data generation 

6. C. Data Scientist 

7. A. Low data volume 

8. A. Volume 

9. B. Big Data Analytics important 

10. D. Small-scale data processing 

11. B. High storage costs 

12. A. Data stored in a fixed format 

13. B. A system for reporting and data analysis 

14. D. Slow data generation 

15. C. Slow data generation 

Unit 2: Technology Landscape 

1. A. Running Pig on a Hadoop cluster 

2. A. LOAD 

3. B. Hadoop 



 

223 

 

4. A. Primitives and Complex 

5. A. GROUP 

6. B. Running Pig on a single machine 

7. B. pig -x mapreduce script.pig 

8. C. Simple and Compound 

9. A. LOAD 

10. C. Basically Available Soft State Eventual Consistency 

11. B. Running Pig on a single machine 

12. B. Local mode 

13. B. Execution functions for running scripts 

14. A. To iterate over each element in a dataset 

15. B. Real-time user data analysis 

 

Unit 3: MongoDB and MapReduce Programming 

1. B. Schema-less data model 

2. A. Table 

3. B. insert() 

4. D. Boolean 

5. C. To process input data and produce key-value pairs 

6. B. Processes intermediate key-value pairs to produce final output 

7. B. To perform local aggregation of intermediate outputs 

8. C. Table 

9. C. BSON 

10. C. $find 

11. D. Shuffle and Sort 

12. A. Date 

13. B. Flexible schema design 

14. C. To determine how the data is split among reducers 



 

224 

 

15. B. update() 

16. B. Distributing intermediate data to reducers 

17. A. remove() 

18. B. A set of documents 

19. A. To reduce the amount of data transferred to the reducer 

20. C. Binary 

Unit 4: Hive 

1. D. All of the above 

2. B. ORC 

3. A. Hive Query Language 

4. C. Partitioning 

5. C. CREATE 

6. A. To provide a columnar storage format 

7. A. User-Defined Function 

8. B. TIMESTAMP 

9. D. STRING 

10. C. To improve query performance 

11. A. To divide data into equal parts based on hash functions 

12. B. CREATE VIEW 

13. C. ORC 

14. A. Serialization and Deserialization 

15. A. INT 

16. A. GROUP BY 

17. A. To filter records after grouping 

18. A. DROP TABLE 

19. B. To create a virtual table 

20. D. VERTICAL JOIN 

Unit 5: Pig 



 

225 

 

1. A. A high-level language for data processing 

2. D. Real-time processing 

3. B. Batch processing of large datasets 

4. B. Running Pig on a single machine 

5. A. LOAD 

6. B. A user-defined function library 

7. B. pig -x mapreduce script.pig 

8. A. Primitives and Complex 

9. A. GROUP 

10. A. LOAD 

11. A. To iterate over each element in a dataset 

12. B. Local mode 

13. A. Evaluation functions that operate on data fields 

14. B. Bag 

15. A. To define custom processing logic 

16. B. STORE 

17. A. Computes the difference between two datasets 

18. B. ILLUSTRATE 

19. B. Log processing and data analysis 

20. B. Pig uses a procedural language, Hive uses a declarative language 



 

226 

 

 

Descriptive Questions 

Unit 1: Big Data and Analytics 

1. What are the main characteristics of structured data, semi-structured data, and 

unstructured data? Provide examples of each. 

2. Explain the concept of Big Data, including its characteristics, evolution, and 

definition. 

3. What are the key challenges associated with Big Data? How do these challenges 

differ from traditional data processing? 

4. Compare and contrast Big Data analytics with traditional business intelligence. 

What are the main differences between the two approaches? 

5. Describe the concept of "Volume, Velocity, Variety, Veracity" (4Vs) in the context 

of Big Data. How do these factors influence data analysis? 

6. Discuss the role of data science and data scientists in the era of Big Data. What 

skills and expertise are required for a career in data science? 

7. Explain the concept of "Basically Available, Soft State, Eventual Consistency" 

(BASE) in distributed systems. How does it relate to Big Data environments? 

8. What are some common terminologies used in Big Data environments, such as 

Hadoop, MapReduce, and NoSQL? Provide brief explanations for each term. 

9. Compare and contrast Big Data analytics tools, such as Hadoop, Spark, and 

Flink. What are the strengths and limitations of each tool? 

10. How does Big Data analytics contribute to decision-making processes in various 

industries, such as healthcare, finance, and retail? 

11. Discuss the importance of data quality and data governance in Big Data 

analytics. How can organizations ensure the accuracy and reliability of their 

data? 

12. Explain the concept of data integration in the context of Big Data. Why is it 

important for organizations to integrate data from multiple sources? 



 

227 

 

13. Describe the concept of data warehousing and its role in Big Data analytics. How 

does it differ from traditional database systems? 

14. Discuss the impact of Big Data on privacy, security, and ethical considerations. 

What measures can organizations take to protect sensitive data? 

15. How do traditional business intelligence approaches differ from advanced 

analytics techniques used in Big Data environments? Provide examples of each 

approach. 

Unit 2: Technology Landscape 

1. What is NoSQL, and how does it differ from traditional relational databases? 

Provide examples of NoSQL databases and their use cases. 

2. Explain the architecture of Hadoop and its core components, including HDFS, 

MapReduce, and YARN. 

3. Describe the concept of distributed computing and its challenges. How does 

Hadoop address these challenges? 

4. Compare and contrast Hadoop with traditional RDBMS systems. What are the 

advantages and disadvantages of each approach? 

5. What is HDFS, and what role does it play in the Hadoop ecosystem? How does it 

differ from traditional file systems? 

6. Explain the role of MapReduce in processing large datasets in a distributed 

environment. How does it work? 

7. What is YARN, and how does it improve resource management in Hadoop 

clusters? What are its key features? 

8. Discuss the interaction between Hadoop and other Big Data technologies, such 

as Apache Spark, Apache Hive, and Apache Pig. 

9. Describe the concept of NoSQL databases and their advantages over traditional 

relational databases. What are some common types of NoSQL databases? 

10. Explain the concept of scalability and fault tolerance in the context of distributed 

systems. How does Hadoop achieve these properties? 



 

228 

 

11. Discuss the concept of distributed data processing and its advantages. How does 

it enable parallel computation? 

12. Describe the role of data serialization and deserialization in Hadoop. What are 

some common serialization formats used in Hadoop? 

13. Compare and contrast batch processing and real-time processing approaches in 

Big Data analytics. What are the use cases for each approach? 

14. Discuss the challenges of managing Big Data environments, including data 

storage, data processing, and resource allocation. 

15. Explain the concept of data locality in Hadoop. How does it impact the 

performance of data processing jobs? 

Unit 3: MongoDB and MapReduce Programming 

1. Describe the key features and advantages of MongoDB as a NoSQL database. 

2. Explain the structure of a MongoDB document and provide examples of 

document-oriented data. 

3. Discuss the differences between relational databases and MongoDB in terms of 

data modeling and schema design. 

4. Explain the MapReduce programming model and its role in processing large 

datasets. 

5. Describe the basic components of a MapReduce job, including Mapper, Reducer, 

and Partitioner. 

6. Provide an overview of the MongoDB Query Language (MQL) and its syntax for 

querying and manipulating data. 

7. Discuss the use cases for MongoDB and its suitability for various types of 

applications. 

8. Explain the concept of sharding in MongoDB and how it helps to distribute data 

across multiple servers. 

9. Discuss the advantages and limitations of MongoDB compared to traditional 

relational databases. 



 

229 

 

10. Describe the process of MapReduce job execution and how it distributes tasks 

across a cluster of nodes. 

11. Explain the role of indexes in MongoDB and how they improve query 

performance. 

12. Discuss the use of aggregation pipelines in MongoDB for complex data 

processing tasks. 

13. Explain the concept of replication in MongoDB and how it ensures data 

availability and fault tolerance. 

14. Describe the process of data backup and recovery in MongoDB. 

15. Discuss best practices for designing schema and data models in MongoDB to 

optimize performance and scalability. 

Unit 4: Hive 

1. Explain the architecture of Apache Hive and its components. 

2. Describe the supported data types in Hive and their usage in table definitions. 

3. Discuss the different file formats supported by Hive and their advantages and 

disadvantages. 

4. Explain the concept of partitioning in Hive and how it improves query 

performance. 

5. Describe the role of bucketing in Hive and its use cases. 

6. Provide an overview of Hive Query Language (HQL) and its syntax for querying 

data. 

7. Discuss the implementation details of RCFile format in Hive and its benefits. 

8. Explain the concept of User-Defined Functions (UDFs) in Hive and how they 

extend its functionality. 

9. Discuss the importance of serialization and deserialization in Hive and its impact 

on data processing. 

10. Describe the process of creating views in Hive and their use cases. 

11. Explain the concept of joins in Hive and different types of join operations 

supported. 



 

230 

 

12. Discuss the use of aggregations in Hive and its syntax for group by and having 

clauses. 

13. Describe the implementation details of Hive partitions and how they are 

managed. 

14. Discuss the integration of Hive with other Hadoop ecosystem components such 

as HDFS and YARN. 

15. Explain the process of optimizing Hive queries for performance and efficiency. 

Unit 5: Pig 

1. Describe the features and advantages of Apache Pig for data processing. 

2. Explain the Pig Latin scripting language and its syntax for defining data 

processing workflows. 

3. Discuss the different execution modes of Apache Pig and their use cases. 

4. Describe the Pig data types and their usage in Pig Latin scripts. 

5. Explain the role of relational operators in Pig and their syntax for data 

manipulation. 

6. Discuss the use of user-defined functions (UDFs) in Pig and how they extend its 

functionality. 

7. Describe the process of loading data into Pig from external sources and storing 

results back to the filesystem. 

8. Explain the use of built-in functions and operators in Pig for common data 

processing tasks. 

9. Discuss the concept of data streaming in Pig and how it enables real-time 

processing. 

10. Describe the Piggybank library and its collection of user-contributed functions 

and utilities. 

11. Explain the diagnostic operators in Pig and how they help in debugging and 

troubleshooting scripts. 

12. Discuss the process of parameter substitution in Pig and its use for dynamic 

script configuration. 



 

231 

 

13. Describe the process of running Pig scripts in local mode and distributed mode. 

14. Explain the use of Pig macros for code reuse and modularization. 

15. Discuss the integration of Pig with other components of the Hadoop ecosystem 

such as HDFS and MapReduce. 



 

232 

 

16.  

 

 


